CCSS

These are the resources that support this Common Core Standard.

CCSS.MATH.CONTENT.8.G.B.6

Title Description Thumbnail Image

Definition--Converse of the Pythagorean Theorem

Definition of the Converse of the Pythagorean Theorem. Note: The download is a JPG file.

Definition--Pythagorean Theorem

The definition of the term "Pythagorean Theorem."

Definition--Pythagorean Triples

The definition of the term "Pythagorean Triples."

MATH EXAMPLE: Right Triangles: Example 01

Right Triangles: Example 1. Given the legs of a right triangle, calculate the value of the hypotenuse.

MATH EXAMPLE: Right Triangles: Example 02

Right Triangles: Example 2. Given the legs of a right triangle, calculate the value of the hypotenuse for a 3-4-5 right triangle.

MATH EXAMPLE: Right Triangles: Example 03

Right Triangles: Example 3. Given the legs of a right triangle, calculate the value of the hypotenuse for a multiple of a 3-4-5 right triangle.

MATH EXAMPLE: Right Triangles: Example 04

Right Triangles: Example 4. Given the legs of a right triangle, calculate the value of the hypotenuse for a multiple of a 3-4-5 right triangle. Side lengths expressed as variables.

MATH EXAMPLE: Right Triangles: Example 05

Right Triangles: Example 5. Given the legs of a right triangle, calculate the value of the hypotenuse for a 5-12-13 right triangle.

MATH EXAMPLE: Right Triangles: Example 06

Right Triangles: Example 6. Given the legs of a right triangle, calculate the value of the hypotenuse for a multiple of a 5-12-13 right triangle.

MATH EXAMPLE: Right Triangles: Example 07

Right Triangles: Example 7. Given the legs of a right triangle, calculate the value of the hypotenuse for a multiple of a 5-12-13 right triangle. Side lengths expressed as variables.

MATH EXAMPLE: Right Triangles: Example 08

Right Triangles: Example 8. Given the legs of a right triangle, calculate the value of the hypotenuse for an isosceles right triangle.

MATH EXAMPLE: Right Triangles: Example 09

Right Triangles: Example 9. Given the legs of a right triangle, calculate the value of the hypotenuse for an isosceles right triangle. Side lengths are proportional to the 1-1-sqrt(2) triangle.

MATH EXAMPLE: Right Triangles: Example 10

Right Triangles: Example 10. Given the legs of a right triangle, calculate the value of the hypotenuse for an isosceles right triangle. Side lengths are expressed as variables.

MATH EXAMPLE: Right Triangles: Example 11

Right Triangles: Example 11. Given the legs of a right triangle, calculate the value of the hypotenuse for a 30-60-90 triangle.

MATH EXAMPLE: Right Triangles: Example 12

Right Triangles: Example 12. Given the legs of a right triangle, calculate the value of the hypotenuse for a 30-60-90 triangle. Side lengths are proportional to the 1-sqrt(3)-2 triangle.

MATH EXAMPLE: Right Triangles: Example 13

Right Triangles: Example 13. Given the legs of a right triangle, calculate the value of the hypotenuse for a 30-60-90 triangle. Side lengths are variables.

MATH EXAMPLE: Right Triangles: Example 14

Right Triangles: Example 14. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg.

MATH EXAMPLE: Right Triangles: Example 15

Right Triangles: Example 15. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a 3-4-5 right triangle.

MATH EXAMPLE: Right Triangles: Example 16

Right Triangles: Example 16. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a multiple of a 3-4-5 right triangle.

MATH EXAMPLE: Right Triangles: Example 17

Right Triangles: Example 17. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a multiple of a 3-4-5 right triangle. Side lengths expressed as variables.

MATH EXAMPLE: Right Triangles: Example 18

Right Triangles: Example 18. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a 5-12-13 right triangle.

MATH EXAMPLE: Right Triangles: Example 19

Right Triangles: Example 19. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a multiple of a 5-12-13 right triangle.

MATH EXAMPLE: Right Triangles: Example 20

Right Triangles: Example 20. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for a multiple of a 5-12-13 right triangle. Side lengths expressed as variables.

MATH EXAMPLE: Right Triangles: Example 21

Right Triangles: Example 21. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for an isosceles right triangle.

MATH EXAMPLE: Right Triangles: Example 22

Right Triangles: Example 22. Given one leg and the hypotenuse of a right triangle, calculate the value of the other leg for an isosceles right triangle. Side lengths are proportional to the 1-1-sqrt(2) triangle.