Use the following Media4Math resources with this Illustrative Math lesson.
Thumbnail Image | Title | Body | Curriculum Topic |
---|---|---|---|
Integers: Video Transcripts | Here are the video transcripts for associated videos on the topic of Integers. | Numerical Expressions | |
Math Examples Collection: The Laws of Exponents | OverviewThis comprehensive collection of 24 Math Examples focuses on the Laws of Exponents, providing educators with a rich resource to enhance their lesson plans. This set of downloadable images covers a wide range of skills related to exponent manipulation. |
Laws of Exponents | |
Math Examples Collection: Modeling Sums with Integer Exponents |
OverviewThis collection aggregates all the math examples around the topic of Modeling Sums with Integer Exponents. There are a total of 7 Math Examples. This collection of resources is made up of downloadable PNG images that you can easily incorporate into your lesson plans.
|
Numerical Expressions | |
Math Video Collection: Video Tutorials Series: Integers |
OverviewThis collection aggregates all the math videos and resources in this series: Integers. There are a total of 36 resources. This collection of resources is made up of downloadable MP4, transcripts, and other resources files that you can easily incorporate into a presentation.
|
Numerical Expressions | |
Math Quiz Collection: The Laws of Exponents |
OverviewThis collection aggregates all the math quizzes on this topic: The Laws of Exponents. There are a total of 3 resources. This collection of quizzes is made up of downloadable PDFs. To download the full set of these resources, click on this link.
|
Laws of Exponents | |
Math Examples Collection: Integer and Rational Exponents | OverviewThis collection from Media4Math on Integer and Rational Exponents offers a comprehensive set of examples on the topic of exponents. These examples gradually increase in complexity, covering a range of skills including integer and rational exponents, simplifying expressions, and applying exponent rules. Each example is supported by visual models to help simplify concepts, making it easier for students to understand the various properties of exponents. |
Numerical Expressions | |
Math Definitions Collection: Exponential and Logarithmic Vocabulary | OverviewThis collection aggregates all the definition image cards around the topic of Exponential and Logarithmic vocabulary. There are a total of 11 terms. This collection of resources is made up of downloadable PNG files that you can easily incorporate into a presentation.
|
Applications of Exponential and Logarithmic Functions | |
Math Games Collection: Drag-N-Drop | OverviewThis is a collection of all our drag-n-drop math games. There are a total of 34 games. These games cover a variety of different skills. Each comes with a large bank of questions, so each game experience will be different. These games are ideal for practice and review.
|
Addition Facts to 25, Counting, Subtraction Facts to 25, Place Value, Polynomial Expressions, Division Expressions and Equations, Point-Slope Form, Slope-Intercept Form, Standard Form, Slope, Applications of Linear Functions, Quadratic Equations and Functions, Data Analysis, Multiplication Expressions and Equations, Solving One-Step Equations, Quadratic Formula, Numerical Expressions, Variable Expressions and Solving Two-Step Equations | |
Integers: Video Tutorials | Here are video tutorials on the topic of Integers. | Numerical Expressions | |
Algebra Applications Teacher's Guide: Equations | Algebra Applications Teacher's Guide: Equations
This is the Teacher's Guide that accompanies Algebra Applications: Equations. This is part of a collection of teacher's guides. To see the complete collection of teacher's guides, click on this link. Note: The download is a PDF file.Related ResourcesTo see resources related to this topic click on the Related Resources tab above. |
Applications of Equations and Inequalities | |
VIDEO: Algebra Applications: Variables and Equations | VIDEO: Algebra Applications: Variables and Equations
TopicEquations |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Algebra Nspirations Teacher's Guide: Variables and Equations | Algebra Nspirations Teacher's Guide: Variables and Equations
This is the Teacher's Guide that accompanies Algebra Nspirations: Variables and Equations. This is part of a collection of teacher's guides. To see the complete collection of teacher's guides, click on this link. Note: The download is a PDF file.Related ResourcesTo see resources related to this topic click on the Related Resources tab above. |
Applications of Equations and Inequalities | |
VIDEO: Algebra Nspirations: Inequalities | VIDEO: Algebra Nspirations: Inequalities
Used in just about any industry, inequalities, like equations, are fundamental building blocks of algebra. Written and hosted by internationally acclaimed mathematics educator Dr. Monica Neagoy, this video explores inequalities--concepts, properties, solutions, and notations--connects them to real-world contexts, and uses the TI-Nspire to make the algebra meaningful. The focus of this program is on linear inequalities in one and two variables. Concepts explored: Equations, inequalities. |
Applications of Equations and Inequalities and Inequalities | |
VIDEO: Algebra Nspirations: Variables and Equations | VIDEO: Algebra Nspirations: Variables and Equations
Ever since the mathematics of the Babylonians, equations have played a central role in the development of algebra. Written and hosted by internationally acclaimed mathematics educator Dr. Monica Neagoy, this video traces the history and evolution of equations. It explores the two principal equations encountered in an introductory algebra course--linear and quadratic--in an engaging way. The foundations of algebra are explored and fundamental questions about the nature of algebra are answered. In addition, problems involving linear and quadratic equations are solved using the TI-Nspire graphing calculator. Algebra teachers looking to integrate hand-held technology and visual media into their instruction will benefit greatly from this series. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Applications: Variables and Equations | Closed Captioned Video: Algebra Applications: Variables and Equations
In this episode of Algebra Applications, two real-world explorations are developed: Biology. Analyzing statistics from honey bee production allows for a mathematical analysis of the so-called Colony Collapse Disorder. Geology. Why do rivers meander instead of traveling in a straight line? In this segment the geological forces that account for a river’s motion are explained. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Applications: Variables and Equations, 1 | Closed Captioned Video: Algebra Applications: Variables and Equations, Segment 1: Introduction
An overview of the key topics to be covered in the video. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Applications: Variables and Equations, 2 | Closed Captioned Video: Algebra Applications: Variables and Equations, Segment 2: Honey Production
Honey bees not only produce a tasty treat, they also help pollinate flowering plants that provide much of the food throughout the world. So, when in 2006 bee colonies started dying out, scientists recognized a serious problem. Analyzing statistics from honey bee production allows for a mathematical analysis of the so-called Colony Collapse Disorder. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Applications: Variables and Equations, 3 | Closed Captioned Video: Algebra Applications: Variables and Equations, Segment 3: River Ratios Why do rivers meander instead of traveling in a straight line? In going from point A to point B, why should a river take the circuitous route it does instead of a direct path? Furthermore, what information can the ratio of the river’s length to its straight-line distance tell us? In this segment the geological forces that account for a river’s motion are explained. In the process, the so-called Meander Ratio is explored. Students construct a mathematical model of a meandering river using the TI-Nspire. Having built the model, students then use it to generate data to find the average of many Meander Ratios. The results show that on average the Meander Ratio is equal to pi. |
Applications of Equations and Inequalities, Variables and Unknowns, Variable Expressions and Applications of Ratios, Proportions, and Percents | |
Closed Captioned Video: Algebra Nspirations: Inequalities | Closed Captioned Video: Algebra Nspirations: Inequalities
Used in just about any industry, inequalities, like equations, are fundamental building blocks of algebra. Written and hosted by internationally acclaimed mathematics educator Dr. Monica Neagoy, this video explores inequalities—concepts, properties, solutions, and notations— connects them to real-world contexts, and uses the TI-Nspire to make the algebra meaningful. The focus of this program is on linear inequalities in one and two variables. Concepts explored: Equations, inequalities. |
Applications of Equations and Inequalities and Inequalities | |
Closed Captioned Video: Algebra Nspirations: Inequalities, 1 | Closed Captioned Video: Algebra Nspirations: Inequalities, Segment 1
In this Investigation we explore linear inequalities in one variable. This video is Segment 1 of a 4 segment series related to Algebra Nspirations: Inequalities. Segments 1 and 2 are grouped together. |
Applications of Equations and Inequalities and Inequalities | |
Closed Captioned Video: Algebra Nspirations: Inequalities, 3 | Closed Captioned Video: Algebra Nspirations: Inequalities, Segment 3
In this Investigation we look at linear inequalities in two variables. This video is Segment 3 of a 4 segment series related to Algebra Nspirations: Inequalities. Segments 3 and 4 are grouped together. |
Applications of Equations and Inequalities and Inequalities | |
Closed Captioned Video: Algebra Nspirations: Variables and Equations | Closed Captioned Video: Algebra Nspirations: Variables and Equations
Ever since the mathematics of the Babylonians, equations have played a central role in the development of algebra. Written and hosted by internationally acclaimed mathematics educator Dr. Monica Neagoy, this video traces the history and evolution of equations. It explores the two principal equations encountered in an introductory algebra course--linear and quadratic--in an engaging way. The foundations of algebra are explored and fundamental questions about the nature of algebra are answered. In addition, problems involving linear and quadratic equations are solved using the TI-Nspire graphing calculator. Algebra teachers looking to integrate hand-held technology and visual media into their instruction will benefit greatly from this series. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Nspirations: Variables and Equations, 1 | Closed Captioned Video: Algebra Nspirations: Variables and Equations, Segment 1
In this Investigation we get a historical overview of equations. This video is Segment 1 of a 2 segment series related to Variables and Equations. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Nspirations: Variables and Equations, 3 | Closed Captioned Video: Algebra Nspirations: Variables and Equations, Segment 3
In this Investigation we solve linear and quadratic equations. This video is Segment 3 of a 4 segment series related to Variables and Equations. Segments 3 and 4 are grouped together. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Algebra Tiles: Modeling Equations Using Algebra Tiles | Closed Captioned Video: Algebra Tiles: Modeling Equations Using Algebra Tiles
DescriptionVideo Tutorial: Algebra Tiles: Modeling Equations Using Algebra Tiles. In this tutorial, review the basic definition of what algebra tiles are and how they are used. Then the video focuses on how to model equations using algebra tiles. This is part of a collection of video tutorials the topic of Algebra Tiles.This series of videos describes what algebra tiles are and how they can be used to model numbers, operations, expressions, and equations. Use this series if you are incorporating the use of algebra tiles in your instruction. |
Algebra Tiles--Expressions and Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Addition Equations | Closed Captioned Video: Anatomy of an Equation: One-Step Addition Equations
In this video learn the mechanics of solving one-step equations involving addition. . |
Solving One-Step Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Addition Equations 2 | Closed Captioned Video: Anatomy of an Equation: One-Step Addition Equations 2
In this video learn the mechanics of solving one-step equations involving addition. . |
Solving One-Step Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Division Equations | Closed Captioned Video: Anatomy of an Equation: One-Step Division Equations
In this video learn the mechanics of solving one-step equations involving division. . |
Solving One-Step Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Multiplication Equations | Closed Captioned Video: Anatomy of an Equation: One-Step Multiplication Equations
In this video learn the mechanics of solving one-step equations involving multiplication. . |
Solving One-Step Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Subtraction Equations | Closed Captioned Video: Anatomy of an Equation: One-Step Subtraction Equations
In this video learn the mechanics of solving one-step equations involving subtraction. . |
Solving One-Step Equations | |
Closed Captioned Video: Anatomy of an Equation: One-Step Subtraction Equations 2 | Closed Captioned Video: Anatomy of an Equation: One-Step Subtraction Equations 2
In this video learn the mechanics of solving one-step equations involving subtraction. . |
Solving One-Step Equations | |
Closed Captioned Video: Integers: Integers and Exponents | Closed Captioned Video: Integers: Integers and Exponents
Video Tutorial: Integers: Integers and Exponents. In this video, students explore the use of integers as exponents with different expressions. This is part of a series of videos on the topic of Integers. This includes defining integers, modeling integers, integer operations, and integer expressions. —PRESS PREVIEW TO SEE THE VIDEO TUTORIAL— To see the complete collection of these videos on integers, click on this link.The following section includes background information on integers (and also rational numbers). Refer to this section as you view the videos, or as review material afterward. |
Numerical Expressions | |
Closed Captioned Video: One-Step Equations: Addition | Closed Captioned Video: One-Step Equations: Addition
Video Tutorial: One-Step Equations: Addition. In this video, get an overview of one-step equations and how to solve them. In particular, look at one-step addition equations. |
Solving One-Step Equations | |
Closed Captioned Video: One-Step Equations: Division | Closed Captioned Video: One-Step Equations: Division
Video Tutorial: One-Step Equations: Division. In this video, students get an overview of one-step equations and how to solve them. In particular, look at one-step division equations. |
Solving One-Step Equations | |
Closed Captioned Video: One-Step Equations: Multiplication | Closed Captioned Video: One-Step Equations: Multiplication
Video Tutorial: One-Step Equations: Multiplication. In this video, students get an overview of one-step equations and how to solve them. In particular, look at one-step multiplication equations. |
Solving One-Step Equations | |
Closed Captioned Video: One-Step Equations: Subtraction | Closed Captioned Video: One-Step Equations: Subtraction
Video Tutorial: One-Step Equations: Subtraction. In this video, students get an overview of one-step equations and how to solve them. In particular, look at one-step subtraction equations. |
Solving One-Step Equations | |
Closed Captioned Video: Overview of Variables and Equations | Closed Captioned Video: Overview of Variables and Equations
In this video segment, get an overview of variables and equations, along with the evolution of algebraic notation. |
Applications of Equations and Inequalities, Variables and Unknowns and Variable Expressions | |
Closed Captioned Video: Two-Step Equations: Division and Addition | Closed Captioned Video: Two-Step Equations: Division and Addition
Video Tutorial: Two-Step Equations: Division and Addition. In this video, we will solve a two-step equation that involves division and addition. |
Solving Two-Step Equations | |
Closed Captioned Video: Two-Step Equations: Division and Subtraction | Closed Captioned Video: Two-Step Equations: Division and Subtraction
Video Tutorial: Two-Step Equations: Division and Subtraction. In this video, we will solve a two-step equation that involves division and subtraction. |
Solving Two-Step Equations | |
Closed Captioned Video: Two-Step Equations: Multiplication and Addition | Closed Captioned Video: Two-Step Equations: Multiplication and Addition
Video Tutorial: Two-Step Equations: Multiplication and Addition. In this video, we will solve a two-step equation that involves multiplication and addition. |
Solving Two-Step Equations | |
Closed Captioned Video: Two-Step Equations: Multiplication and Subtraction | Closed Captioned Video: Two-Step Equations: Multiplication and Subtraction
Video Tutorial: Two-Step Equations: Multiplication and Subtraction. In this video, we will solve a two-step equation that involves multiplication and subtraction. |
Solving Two-Step Equations | |
Definition--Equation Concepts--"Not Equal To" | Not Equal ToTopicEquations DefinitionThe "Not Equal To" symbol (≠) is used to indicate that two values are not equal. DescriptionThe "Not Equal To" symbol is crucial in mathematics as it denotes inequality between two expressions. This symbol is used in various mathematical contexts, such as solving inequalities, comparing numbers, and expressing conditions in algebraic equations. For example, in the inequality 𝑥 ≠ 5, it means that x can be any number except 5. |
Numerical and Algebraic Expressions | |
Definition--Equation Concepts--Addition Property of Equality | Addition Property of EqualityTopicEquations DefinitionThe Addition Property of Equality states that if you add the same value to both sides of an equation, the equality remains true. DescriptionThe Addition Property of Equality is a fundamental principle in algebra. It asserts that for any real numbers a, b, and c, if a = b, then a + c = b + c. This property is used to solve equations and maintain balance. For example, to solve x − 3 = 7, you add 3 to both sides to get x = 10. |
Applications of Equations and Inequalities | |
Definition--Equation Concepts--Algebraic Equation | Algebraic EquationTopicEquations DefinitionAn algebraic equation is a mathematical statement that shows the equality of two algebraic expressions. It's also another way of referring to a polynomial equation. DescriptionAlgebraic equations are central to algebra and involve variables, constants, and arithmetic operations. They are used to represent relationships and solve problems. For instance, the equation 2x + 3 = 7 can be solved to find x. Algebraic equations come in various forms, including linear, quadratic, and polynomial equations. |
Applications of Equations and Inequalities | |
Definition--Equation Concepts--Algebraic Expression | Algebraic ExpressionTopicEquations DefinitionAn algebraic expression is a combination of variables, constants, and arithmetic operations, without an equality sign. DescriptionAlgebraic expressions are fundamental components of algebra. They represent quantities and relationships without asserting equality. Examples include 3x + 4 and 5y − 2. Unlike equations, expressions cannot be solved but can be simplified or evaluated for given variable values. |
Numerical and Algebraic Expressions | |
Definition--Equation Concepts--Assigning Values to Variables | Assigning Values to VariablesTopicEquations DefinitionAssigning values to variables involves giving specific values to variables in an equation or expression. DescriptionAssigning values to variables is a fundamental process in algebra. It involves substituting variables with specific numbers to evaluate expressions or solve equations. For example, in the equation y = 2x + 3 assigning x = 4 gives y = 11. |
Variable Expressions | |
Definition--Equation Concepts--Conditional Equation | Conditional EquationTopicEquations DefinitionA conditional equation is true only for specific values of the variable(s). DescriptionConditional equations are equations that hold true only under certain conditions or for specific variable values. For example, the equation x2 = 4 is true only when x = 2 or x = −2. These equations contrast with identities, which are true for all variable values. |
Applications of Equations and Inequalities | |
Definition--Equation Concepts--Constant Term | Constant TermTopicEquations DefinitionA constant term is a term in an algebraic expression that does not contain any variables. DescriptionConstant terms are fixed values in algebraic expressions and equations. They do not change because they lack variables. For example, in the expression 3x + 4 the number 4 is a constant term. Constant terms are essential in forming and solving equations. |
Variables and Unknowns | |
Definition--Equation Concepts--Division Property of Equality | Division Property of EqualityTopicEquations DefinitionThe Division Property of Equality states that if you divide both sides of an equation by the same nonzero value, the equality remains true. DescriptionThe Division Property of Equality is a key principle in algebra. It states that for any real numbers a, b, and c (where 𝑐 ≠ 0), if a = b, then a ÷ c = b ÷ c This property is used to solve equations by isolating variables. For example, to solve 3x = 12 divide both sides by 3 to get x = 4. |
Applications of Equations and Inequalities | |
Definition--Equation Concepts--Equality | EqualityTopicEquations DefinitionEquality is a mathematical statement that asserts that two expressions are equal. DescriptionEquality is a foundational concept in mathematics. It indicates that two expressions have the same value, represented by the symbol "=". For example, in the equation 2 + 3 = 5, both sides are equal. Equality is used to form equations and solve problems. In real-world applications, equality is used in accounting, engineering, and data analysis to ensure balance and accuracy. Understanding equality helps students develop logical reasoning and problem-solving skills. |
Applications of Equations and Inequalities |