Display Title
Math Example: Laws of Logarithms: Example 12
Display Title
Math Example: Laws of Logarithms: Example 12
Topic
Logarithms
Description
This example demonstrates the simplification of the natural logarithm expression ln(1/e) - ln(1/e2) using logarithmic properties. The solution applies the quotient rule of logarithms, ln(a) - ln(b) = ln(a/b), to rewrite the expression as ln((1/e)/(1/e2)). This simplifies to ln(e), which equals 1, since e is the base of natural logarithms.
Logarithms are a fundamental concept in advanced mathematics, particularly in algebra and calculus. These examples help teach logarithmic properties by providing step-by-step demonstrations of how to manipulate and simplify logarithmic expressions. By working through various scenarios involving natural logarithms, students can gain a deeper understanding of the rules governing logarithms and how to apply them in different contexts.
It's crucial for students to see multiple worked-out examples to fully grasp logarithmic concepts, especially those involving natural logarithms. Each example reinforces the principles while introducing slight variations, helping students recognize patterns and develop problem-solving strategies. This approach builds confidence and proficiency in handling logarithmic expressions, preparing students for more complex mathematical challenges involving exponential and logarithmic functions.
Teacher's Script: Let's examine this example with natural logarithms. We have ln(1/e) - ln(1/e2). When we subtract logarithms, we can use the quotient rule. So, this becomes ln((1/e)/(1/e2)). Now, let's simplify the fraction inside: (1/e) divided by (1/e2) is equal to e. So we end up with ln(e). What's special about ln(e)? That's right, it equals 1, because e is the base of natural logarithms. This example shows how we can use logarithm properties along with the special characteristics of e to simplify complex expressions.
For a complete collection of math examples related to Logarithms click on this link: Math Examples: Laws of Logarithms Collection.
Common Core Standards | CCSS.MATH.CONTENT.HSF.BF.B.5 |
---|---|
Grade Range | 9 - 12 |
Curriculum Nodes |
Algebra • Exponential and Logarithmic Functions • Laws of Logarithms |
Copyright Year | 2013 |
Keywords | logarithms, laws of logarithms |