Display Title

Video Tutorial: Slope Formula, Video 4

Video Tutorial: Slope Formula, Video 4

Topic

Slope

Description

Explains finding a negative slope in Quadrant II using the slope formula. Demonstrates with points (-1, 4) and (-7, 6), resulting in a slope of -1/3. Covers key concepts like rise over run and coordinate differences.

This video illustrates the Slope, highlighting key mathematical concepts. Students will learn about the derivation and application of the slope formula through concrete examples and clear explanations. This lesson offers a foundational understanding crucial for graphing linear equations and interpreting real-world scenarios.

Understanding the slope formula is pivotal in mathematics. The slope, often represented as m, measures the steepness and direction of a line on a graph. It’s calculated as the ratio of the vertical change (rise) to the horizontal change (run) between two points. By mastering this formula, students can analyze linear relationships, predict trends, and solve algebraic equations.

Teacher’s Script: Today, we’ll explore how to determine the steepness of a line using a simple formula. This method is essential for understanding how lines behave in different scenarios. Pay attention to how the video breaks down the formula into manageable steps, making it easier to grasp its application.

For a complete collection of videos related to Slope Formula click on this link: Video Tutorials: Slope Formula Collection.


What Is Slope?

Slope is a surprisingly complicated concept. Slope involves these components.

  • A ratio of two measurements
  • The measurements are coordinate differences
  • The coordinate differences are based on the coordinates of two points in an x-y Cartesian coordinate system

So, let's look at the two main ideas separately: ratios and Cartesian coordinates.

Brief Review of Ratio

What is a ratio? It is a relationship between two quantities. Take a look at the definition.

Ratio .The relationship between two numbers, represented as a quotient. The numbers in the ratio must have the same units of measurement or represent similar quantities.

Click on this link to learn more about ratios. This slide show includes a video and examples of different ratios. Here are some additional ratios topics you should review. Each of the following includes a link to a slide show with additional content:

Calculating Slope Without Coordinates

Slope is a ratio. So, before we review the coordinates component, we can begin calculating slope now.

Take a look at this right triangle. 

Slope Formula

You can see that we know the vertical height of the triangle (also called the rise) and the horizontal length (also called the run), so we have all the information he need to calculate the slope. The equation shown results in a slope of 3/4. 

But for this right triangle, what is the slope a measurement of? This right triangle has horizontal and vertical lengths. The slope is a measure of the orientation of the third side of the triangle.

So, you don't need coordinates to calculate slope. In fact, when calculating the pitch of a roof (an equivalent to the slope) vertical and horizontal measurements are often used. For example, take a look at this illustration of a roof. Note the orange triangle, which can be used to calculate the pitch of the roof.

Slope Formula

Suppose that the height of the overlaid triangle is 9 feet and the horizontal distance is 18 feet. The pitch of this slope is shown below.

Rise : Run

9 : 18

This can be simplified as a ratio of 1:2.

Although slope can be calculated as a ratio without coordinate measurements, the slope formula is often written as a ratio that involves coordinates. So, now we review Cartesian coordinates.

Brief Review of Cartesian Coordinates

Slope is the ratio of the difference in coordinates. Let’s briefly review the Cartesian coordinate system.

The Cartesian coordinate system consists of two axes that are perpendicular to each other. The horizontal axis is labeled x and the vertical axis is labeled y.

Each axis is a number line that represents all positive and negative real numbers, as well as zero. There are four quadrants, which are labeled as shown. 

A point on this coordinate grid has coordinates x and y, as shown below.

With this as the background, let's now look at how to calculate slope using coordinates. 

Slope

As we have noted, slope is a ratio. See the formal definition below, which includes the ratio of the rise over the run.

The ratio of the rise over the run, or the change in vertical distance over the change in horizontal distance.

Recall that a ratio can look like a fraction and can be thought of as one number divided by another. What two numbers make up this ratio? As you can see from the definition, it’s the ratio of the change in y-coordinates over the change in x-coordinates.

Where do these changes in coordinates come from? Take a look at this example. There are two points, each with its own coordinates. For this example, we label the coordinates as variables, instead of numbers.

A coordinate graph with two points, each with its own x-y coordinates.

The difference in the y-coordinates is shown in this equation:

The equation for the change in y coordinates.

The difference in the x-coordinates is shown in this equation:

The equation for the change in x coordinates.

The ratio of these differences is shown below:

The ratio of the change in y coordinates over the change in x coordinates.

This ratio is also known as the slope formula.

The equation used to find the slope m of a line, given two coordinates on the line.

Slope can be positive, negative, zero, or even be undefined. This illustration summarizes the four main types of slope measurements.

Slope Formula

When the orientation of a line goes up in going from left to right, then it has a positive slope. When the orientation of a line goes down in going from left to right, then it has a negative slope. A horizontal line has a slope of zero. A vertical line has an undefined slope because in the slope formula it would involve dividing by zero, which is what makes the slope undefined.

Common Core Standards CCSS.MATH.CONTENT.8.EE.B.6
Duration 2.00 minutes
Grade Range 6 - 9
Curriculum Nodes Algebra
    • Linear Functions and Equations
        • Slope
Copyright Year 2016
Keywords slope formula, negative slope, video tutorial