Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 7 Unit 9

Putting it All Together

Lesson 3: More Costs of Running a Restaurant

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Topic
Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8

Topic

The Math of Money

Description

What is the tax due on a $1575.50 purchase when the sales tax rate is 8.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8

Topic

The Math of Money

Description

What is the tax due on a $1575.50 purchase when the sales tax rate is 8.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9

Topic

The Math of Money

Description

What is the tax due on a $1999.99 purchase when the sales tax rate is 9.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9

Topic

The Math of Money

Description

What is the tax due on a $1999.99 purchase when the sales tax rate is 9.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9

Topic

The Math of Money

Description

What is the tax due on a $1999.99 purchase when the sales tax rate is 9.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9

Topic

The Math of Money

Description

What is the tax due on a $1999.99 purchase when the sales tax rate is 9.5%? The example shows how to apply the formula Tax Due = Cost * Tax Rate.

Calculating tax is a fundamental skill in understanding financial literacy. This example and others like it help illustrate how percentages are applied in real-world scenarios, such as shopping and services.

Seeing multiple worked-out examples allows students to recognize patterns and reinforce their understanding of applying formulas consistently in various contexts. It ensures they can adapt to different numbers and situations.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1

Topic

The Math of Money

Description

Calculate a 15% tip on a $50 restaurant bill. The problem requires finding 15% of 50. To calculate the tip, multiply the cost (50) by the tip rate (0.15). Tip = 50 * 0.15 = 7.50. The answer is $7.50.

In general, the topic 'The Math of Money' covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1

Topic

The Math of Money

Description

Calculate a 15% tip on a $50 restaurant bill. The problem requires finding 15% of 50. To calculate the tip, multiply the cost (50) by the tip rate (0.15). Tip = 50 * 0.15 = 7.50. The answer is $7.50.

In general, the topic 'The Math of Money' covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1

Topic

The Math of Money

Description

Calculate a 15% tip on a $50 restaurant bill. The problem requires finding 15% of 50. To calculate the tip, multiply the cost (50) by the tip rate (0.15). Tip = 50 * 0.15 = 7.50. The answer is $7.50.

In general, the topic 'The Math of Money' covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10

Topic

The Math of Money

Description

Calculate a 9.5% sales commission on a $350,999 sale. The problem requires finding 9.5% of 350,999. To calculate the commission, multiply the sale amount (350,999) by the commission rate (0.095). Commission = 350,999 * 0.095 ≈ 33,344.91. The answer is approximately $33,344.91.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10

Topic

The Math of Money

Description

Calculate a 9.5% sales commission on a $350,999 sale. The problem requires finding 9.5% of 350,999. To calculate the commission, multiply the sale amount (350,999) by the commission rate (0.095). Commission = 350,999 * 0.095 ≈ 33,344.91. The answer is approximately $33,344.91.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10

Topic

The Math of Money

Description

Calculate a 9.5% sales commission on a $350,999 sale. The problem requires finding 9.5% of 350,999. To calculate the commission, multiply the sale amount (350,999) by the commission rate (0.095). Commission = 350,999 * 0.095 ≈ 33,344.91. The answer is approximately $33,344.91.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2

Topic

The Math of Money

Description

Calculate a 16% tip on a $55 restaurant bill. The problem requires finding 16% of 55. To calculate the tip, multiply the cost (55) by the tip rate (0.16). Tip = 55 * 0.16 = 8.8. The answer is $8.80.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2

Topic

The Math of Money

Description

Calculate a 16% tip on a $55 restaurant bill. The problem requires finding 16% of 55. To calculate the tip, multiply the cost (55) by the tip rate (0.16). Tip = 55 * 0.16 = 8.8. The answer is $8.80.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2

Topic

The Math of Money

Description

Calculate a 16% tip on a $55 restaurant bill. The problem requires finding 16% of 55. To calculate the tip, multiply the cost (55) by the tip rate (0.16). Tip = 55 * 0.16 = 8.8. The answer is $8.80.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3

Topic

The Math of Money

Description

Calculate an 18% tip on a $75.50 restaurant bill. The problem requires finding 18% of 75.50. To calculate the tip, multiply the cost (75.50) by the tip rate (0.18). Tip = 75.50 * 0.18 = 13.59. The answer is $13.59.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3

Topic

The Math of Money

Description

Calculate an 18% tip on a $75.50 restaurant bill. The problem requires finding 18% of 75.50. To calculate the tip, multiply the cost (75.50) by the tip rate (0.18). Tip = 75.50 * 0.18 = 13.59. The answer is $13.59.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3

Topic

The Math of Money

Description

Calculate an 18% tip on a $75.50 restaurant bill. The problem requires finding 18% of 75.50. To calculate the tip, multiply the cost (75.50) by the tip rate (0.18). Tip = 75.50 * 0.18 = 13.59. The answer is $13.59.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4

Topic

The Math of Money

Description

Calculate a 19.5% tip on a $49.99 restaurant bill. The problem requires finding 19.5% of 49.99. To calculate the tip, multiply the cost (49.99) by the tip rate (0.195). Tip = 49.99 * 0.195 Å 9.75. The answer is approximately $9.75.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4

Topic

The Math of Money

Description

Calculate a 19.5% tip on a $49.99 restaurant bill. The problem requires finding 19.5% of 49.99. To calculate the tip, multiply the cost (49.99) by the tip rate (0.195). Tip = 49.99 * 0.195 Å 9.75. The answer is approximately $9.75.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4

Topic

The Math of Money

Description

Calculate a 19.5% tip on a $49.99 restaurant bill. The problem requires finding 19.5% of 49.99. To calculate the tip, multiply the cost (49.99) by the tip rate (0.195). Tip = 49.99 * 0.195 Å 9.75. The answer is approximately $9.75.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5

Topic

The Math of Money

Description

Calculate a 22.5% tip on a $159.99 restaurant bill. The problem requires finding 22.5% of 159.99. To calculate the tip, multiply the cost (159.99) by the tip rate (0.225). Tip = 159.99 * 0.225 ≈ 35.99. The answer is approximately $35.99.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5

Topic

The Math of Money

Description

Calculate a 22.5% tip on a $159.99 restaurant bill. The problem requires finding 22.5% of 159.99. To calculate the tip, multiply the cost (159.99) by the tip rate (0.225). Tip = 159.99 * 0.225 ≈ 35.99. The answer is approximately $35.99.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5

Topic

The Math of Money

Description

Calculate a 22.5% tip on a $159.99 restaurant bill. The problem requires finding 22.5% of 159.99. To calculate the tip, multiply the cost (159.99) by the tip rate (0.225). Tip = 159.99 * 0.225 ≈ 35.99. The answer is approximately $35.99.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6

Topic

The Math of Money

Description

Calculate a 5% sales commission on a $1000 sale. The problem requires finding 5% of 1000. To calculate the commission, multiply the sale amount (1000) by the commission rate (0.05). Commission = 1000 * 0.05 = 50. The answer is $50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6

Topic

The Math of Money

Description

Calculate a 5% sales commission on a $1000 sale. The problem requires finding 5% of 1000. To calculate the commission, multiply the sale amount (1000) by the commission rate (0.05). Commission = 1000 * 0.05 = 50. The answer is $50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6

Topic

The Math of Money

Description

Calculate a 5% sales commission on a $1000 sale. The problem requires finding 5% of 1000. To calculate the commission, multiply the sale amount (1000) by the commission rate (0.05). Commission = 1000 * 0.05 = 50. The answer is $50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7

Topic

The Math of Money

Description

Calculate a 6% sales commission on a $1200 sale. The problem requires finding 6% of 1200. To calculate the commission, multiply the sale amount (1200) by the commission rate (0.06). Commission = 1200 * 0.06 = 72. The answer is $72.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7

Topic

The Math of Money

Description

Calculate a 6% sales commission on a $1200 sale. The problem requires finding 6% of 1200. To calculate the commission, multiply the sale amount (1200) by the commission rate (0.06). Commission = 1200 * 0.06 = 72. The answer is $72.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7

Topic

The Math of Money

Description

Calculate a 6% sales commission on a $1200 sale. The problem requires finding 6% of 1200. To calculate the commission, multiply the sale amount (1200) by the commission rate (0.06). Commission = 1200 * 0.06 = 72. The answer is $72.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8

Topic

The Math of Money

Description

Calculate a 7.5% sales commission on a $25,500 sale. The problem requires finding 7.5% of 25,500. To calculate the commission, multiply the sale amount (25,500) by the commission rate (0.075). Commission = 25,500 * 0.075 = 1912.50. The answer is $1,912.50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8

Topic

The Math of Money

Description

Calculate a 7.5% sales commission on a $25,500 sale. The problem requires finding 7.5% of 25,500. To calculate the commission, multiply the sale amount (25,500) by the commission rate (0.075). Commission = 25,500 * 0.075 = 1912.50. The answer is $1,912.50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8

Topic

The Math of Money

Description

Calculate a 7.5% sales commission on a $25,500 sale. The problem requires finding 7.5% of 25,500. To calculate the commission, multiply the sale amount (25,500) by the commission rate (0.075). Commission = 25,500 * 0.075 = 1912.50. The answer is $1,912.50.

In general, the topic "The Math of Money" covers understanding the calculation of financial metrics like tips and commissions. Examples in this collection focus on real-world scenarios where these calculations are necessary, helping students grasp the mathematical principles involved.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9

Topic

The Math of Money

Description

Calculate an 8.5% sales commission on a $125,500 sale. The problem requires finding 8.5% of 125,500. To calculate the commission, multiply the sale amount (125,500) by the commission rate (0.085). Commission = 125,500 * 0.085 = 10,667.50. The answer is $10,667.50.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9

Topic

The Math of Money

Description

Calculate an 8.5% sales commission on a $125,500 sale. The problem requires finding 8.5% of 125,500. To calculate the commission, multiply the sale amount (125,500) by the commission rate (0.085). Commission = 125,500 * 0.085 = 10,667.50. The answer is $10,667.50.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9

Topic

The Math of Money

Description

Calculate an 8.5% sales commission on a $125,500 sale. The problem requires finding 8.5% of 125,500. To calculate the commission, multiply the sale amount (125,500) by the commission rate (0.085). Commission = 125,500 * 0.085 = 10,667.50. The answer is $10,667.50.

Percents
Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1

Topic

Math of Money

Description

This example demonstrates compound interest calculation for a $1000 investment at a 2.5% interest rate over 5 years, compounded annually. Using the formula A = P(1 + r/n)nt, where P is the principal amount, r is the interest rate, n is the number of times interest is compounded per year, and t is the number of years, the final amount is calculated to be $1131.41.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1

Topic

Math of Money

Description

This example demonstrates compound interest calculation for a $1000 investment at a 2.5% interest rate over 5 years, compounded annually. Using the formula A = P(1 + r/n)nt, where P is the principal amount, r is the interest rate, n is the number of times interest is compounded per year, and t is the number of years, the final amount is calculated to be $1131.41.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1 Math Example--Math of Money--Compound Interest: Example 1

Topic

Math of Money

Description

This example demonstrates compound interest calculation for a $1000 investment at a 2.5% interest rate over 5 years, compounded annually. Using the formula A = P(1 + r/n)nt, where P is the principal amount, r is the interest rate, n is the number of times interest is compounded per year, and t is the number of years, the final amount is calculated to be $1131.41.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded monthly. Using the formula A = P(1 + r/n)nt, where P = 1000, r = 0.05, n = 12, and t = 5, the final amount is $1283.61.

Compound interest is a key concept in financial mathematics that shows how investments grow over time. This example highlights monthly compounding, demonstrating the impact of more frequent compounding on returns. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded monthly. Using the formula A = P(1 + r/n)nt, where P = 1000, r = 0.05, n = 12, and t = 5, the final amount is $1283.61.

Compound interest is a key concept in financial mathematics that shows how investments grow over time. This example highlights monthly compounding, demonstrating the impact of more frequent compounding on returns. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10 Math Example--Math of Money--Compound Interest: Example 10

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded monthly. Using the formula A = P(1 + r/n)nt, where P = 1000, r = 0.05, n = 12, and t = 5, the final amount is $1283.61.

Compound interest is a key concept in financial mathematics that shows how investments grow over time. This example highlights monthly compounding, demonstrating the impact of more frequent compounding on returns. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded daily. The formula $$A = P(1 + r/n)nt is used with P = 1000, r = 0.05, n = 365, and t = 5, resulting in an amount of $1284.00.

Understanding compound interest is crucial for financial literacy. This example demonstrates daily compounding and its effect on investment growth compared to other frequencies. By exploring various scenarios, students learn how different compounding intervals influence financial outcomes.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded daily. The formula $$A = P(1 + r/n)nt is used with P = 1000, r = 0.05, n = 365, and t = 5, resulting in an amount of $1284.00.

Understanding compound interest is crucial for financial literacy. This example demonstrates daily compounding and its effect on investment growth compared to other frequencies. By exploring various scenarios, students learn how different compounding intervals influence financial outcomes.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11 Math Example--Math of Money--Compound Interest: Example 11

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded daily. The formula $$A = P(1 + r/n)nt is used with P = 1000, r = 0.05, n = 365, and t = 5, resulting in an amount of $1284.00.

Understanding compound interest is crucial for financial literacy. This example demonstrates daily compounding and its effect on investment growth compared to other frequencies. By exploring various scenarios, students learn how different compounding intervals influence financial outcomes.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded continuously. Using the formula A = Pert, where P = 1000, r = 0.05, and t = 5, the final amount is $1284.03.

Compound interest is a fundamental concept in finance, illustrating how investments grow exponentially over time. This example highlights continuous compounding, which shows the impact of applying interest at every possible moment. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded continuously. Using the formula A = Pert, where P = 1000, r = 0.05, and t = 5, the final amount is $1284.03.

Compound interest is a fundamental concept in finance, illustrating how investments grow exponentially over time. This example highlights continuous compounding, which shows the impact of applying interest at every possible moment. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12 Math Example--Math of Money--Compound Interest: Example 12

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment at a 5% interest rate over 5 years, compounded continuously. Using the formula A = Pert, where P = 1000, r = 0.05, and t = 5, the final amount is $1284.03.

Compound interest is a fundamental concept in finance, illustrating how investments grow exponentially over time. This example highlights continuous compounding, which shows the impact of applying interest at every possible moment. Understanding these differences helps students apply compound interest in real-world financial scenarios.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 13 Math Example--Math of Money--Compound Interest: Example 13 Math Example--Math of Money--Compound Interest: Example 13

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment with an interest rate of 2.5% over 10 years, compounded annually. Using the formula A = P(1 + r/n)nt, where P = 1000, r = 0.025, n = 1, and $$t = 10, the final amount is $1280.08.

Understanding compound interest is crucial for financial literacy. This example demonstrates annual compounding and its effect on investment growth compared to other frequencies. By exploring various scenarios, students learn how different compounding intervals influence financial outcomes.

Compound Interest
Math Example--Math of Money--Compound Interest: Example 13 Math Example--Math of Money--Compound Interest: Example 13 Math Example--Math of Money--Compound Interest: Example 13

Topic

Math of Money

Description

This example calculates compound interest for a $1000 investment with an interest rate of 2.5% over 10 years, compounded annually. Using the formula A = P(1 + r/n)nt, where P = 1000, r = 0.025, n = 1, and $$t = 10, the final amount is $1280.08.

Understanding compound interest is crucial for financial literacy. This example demonstrates annual compounding and its effect on investment growth compared to other frequencies. By exploring various scenarios, students learn how different compounding intervals influence financial outcomes.

Compound Interest