Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 7 Unit 9

Putting it All Together

Lesson 3: More Costs of Running a Restaurant

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Topic
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations