IXL Ad

Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 6 Unit 3

Unit Rates and Percentages

Lesson 13: Benchmark Percentages

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Nodes
Math Example--Math of Money--Calculating Tax--Example 4 Math Example--Math of Money--Calculating Tax--Example 4 Math Example--Math of Money--Calculating Tax--Example 4

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tax--Example 5 Math Example--Math of Money--Calculating Tax--Example 5 Math Example--Math of Money--Calculating Tax--Example 5

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tax--Example 6 Math Example--Math of Money--Calculating Tax--Example 6 Math Example--Math of Money--Calculating Tax--Example 6

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tax--Example 7 Math Example--Math of Money--Calculating Tax--Example 7 Math Example--Math of Money--Calculating Tax--Example 7

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8 Math Example--Math of Money--Calculating Tax--Example 8

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9 Math Example--Math of Money--Calculating Tax--Example 9

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1 Math Example--Math of Money--Calculating Tips and Commissions--Example 1

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10 Math Example--Math of Money--Calculating Tips and Commissions--Example 10

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2 Math Example--Math of Money--Calculating Tips and Commissions--Example 2

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3 Math Example--Math of Money--Calculating Tips and Commissions--Example 3

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4 Math Example--Math of Money--Calculating Tips and Commissions--Example 4

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5 Math Example--Math of Money--Calculating Tips and Commissions--Example 5

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6 Math Example--Math of Money--Calculating Tips and Commissions--Example 6

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7 Math Example--Math of Money--Calculating Tips and Commissions--Example 7

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8 Math Example--Math of Money--Calculating Tips and Commissions--Example 8

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9 Math Example--Math of Money--Calculating Tips and Commissions--Example 9

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 1 Math Example--Math of Money--Simple Interest--Example 1 Math Example--Math of Money--Simple Interest--Example 1

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 10 Math Example--Math of Money--Simple Interest--Example 10 Math Example--Math of Money--Simple Interest--Example 10

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 2 Math Example--Math of Money--Simple Interest--Example 2 Math Example--Math of Money--Simple Interest--Example 2

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 3 Math Example--Math of Money--Simple Interest--Example 3 Math Example--Math of Money--Simple Interest--Example 3

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 4 Math Example--Math of Money--Simple Interest--Example 4 Math Example--Math of Money--Simple Interest--Example 4

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 5 Math Example--Math of Money--Simple Interest--Example 5 Math Example--Math of Money--Simple Interest--Example 5

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 6 Math Example--Math of Money--Simple Interest--Example 6 Math Example--Math of Money--Simple Interest--Example 6

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 7 Math Example--Math of Money--Simple Interest--Example 7 Math Example--Math of Money--Simple Interest--Example 7

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 8 Math Example--Math of Money--Simple Interest--Example 8 Math Example--Math of Money--Simple Interest--Example 8

This is part of a collection of math examples that focus on money.

Percents
Math Example--Math of Money--Simple Interest--Example 9 Math Example--Math of Money--Simple Interest--Example 9 Math Example--Math of Money--Simple Interest--Example 9

This is part of a collection of math examples that focus on money.

Percents
Math Example--Percents-- Equations with Percents: Example 1 Math Example--Percents--Equations with Percents: Example 1 Math Example--Percents--Equations with Percents: Example 1

Topic

Solving Equations

Description

This math example focuses on solving percent equations, specifically asking "What is 5% of 8?" The solution involves converting 5% to its decimal form, 0.05, and then multiplying it by 8 to get the result of 0.4. This straightforward approach demonstrates how to tackle basic percent calculations efficiently.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 10 Math Example--Percents--Equations with Percents: Example 10 Math Example--Percents--Equations with Percents: Example 10

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 170% of 9.5?" The solution involves converting 170% to its decimal equivalent, 1.7, and then multiplying it by 9.5 to obtain the result of 16.15. This example combines a percentage greater than 100% with a decimal base number, further illustrating the versatility of the percent-to-decimal conversion method in complex scenarios.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 11 Math Example--Percents--Equations with Percents: Example 11 Math Example--Percents--Equations with Percents: Example 11

Topic

Solving Equations

Description

This math example focuses on solving percent equations, specifically asking "What is 225.5% of 78?" The solution involves converting 225.5% to its decimal form, 2.255, and then multiplying it by 78 to arrive at the answer of 175.89. This example introduces a decimal percentage greater than 200% and a larger whole number as the base value, demonstrating the scalability and flexibility of the percent-to-decimal conversion method in complex scenarios.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 12 Math Example--Percents--Equations with Percents: Example 12 Math Example--Percents--Equations with Percents: Example 12

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 400% of 92.8?" The solution involves converting 400% to its decimal equivalent, 4.0, and then multiplying it by 92.8 to obtain the result of 371.2. This example showcases how to handle percentages greater than 100% and their application to decimal numbers, illustrating the versatility of the percent-to-decimal conversion method in complex scenarios.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 13 Math Example--Percents--Equations with Percents: Example 13 Math Example--Percents--Equations with Percents: Example 13

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "5 is what percent of 9?" The solution involves setting up the equation 9 * (x / 100) = 5, then solving for x to get x = 5 * (100 / 9), which is approximately 55.56%. This example introduces a new type of percent problem where students must find the percentage given two known values.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 14 Math Example--Percents--Equations with Percents: Example 14 Math Example--Percents--Equations with Percents: Example 14

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "6 is what percent of 2.3?" The solution involves setting up the equation 2.3 * (x / 100) = 6, then solving for x to get x = 6 * (100 / 2.3), which is approximately 260.87%. This example introduces a scenario where the resulting percentage is greater than 100% and involves a decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 15 Math Example--Percents--Equations with Percents: Example 15 Math Example--Percents--Equations with Percents: Example 15

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "9 is what percent of 38?" The solution involves setting up the equation 38 * (x / 100) = 9, then solving for x to get x = 9 * (100 / 38), which is approximately 23.68%. This example demonstrates how to calculate a percentage when the first number is smaller than the second, resulting in a percentage less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 16 Math Example--Percents--Equations with Percents: Example 16 Math Example--Percents--Equations with Percents: Example 16

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "2 is what percent of 55.5?" The solution involves setting up the equation 55.5 * (x / 100) = 2, then solving for x to get x = 2 * (100 / 55.5), which is approximately 3.6036%. This example introduces a scenario where the resulting percentage is a small fraction, less than 5%, and involves a decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 17 Math Example--Percents--Equations with Percents: Example 17 Math Example--Percents--Equations with Percents: Example 17

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "8 is what percent of 120?" The solution involves setting up the equation 120 * (x / 100) = 8, then solving for x to get x = 8 * (100 / 120), which is approximately 6.67%. This example demonstrates how to calculate a percentage when dealing with larger whole numbers, resulting in a percentage less than 10%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 18 Math Example--Percents--Equations with Percents: Example 18 Math Example--Percents--Equations with Percents: Example 18

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "3.5 is what percent of 350?" The solution involves setting up the equation 350 * (x / 100) = 3.5, then solving for x to get x = 3.5 * (100 / 350), which equals 1%. This example introduces a scenario where the resulting percentage is a whole number (1%) and involves a decimal number as the first value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19 Math Example--Percents--Equations with Percents: Example 19

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "12 is what percent of 8?" The solution involves setting up the equation 8 * (x / 100) = 12, then solving for x to get x = 12 * (100 / 8), which equals 150%. This example demonstrates how to calculate a percentage when the first number is larger than the second, resulting in a percentage greater than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2 Math Example--Percents--Equations with Percents: Example 2

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "What is 7% of 9.5?" The solution involves converting 7% to its decimal equivalent, 0.07, and then multiplying it by 9.5 to obtain the result of 0.665. This example builds upon the previous one by introducing a decimal number as the base value.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20 Math Example--Percents--Equations with Percents: Example 20

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "32 is what percent of 1.5?" The solution involves setting up the equation 1.5 * (x / 100) = 32, then solving for x to get x = 32 * (100 / 1.5), which equals 2133.3%. This example introduces a scenario where the resulting percentage is significantly larger than 100% and involves a decimal base number less than 1.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21 Math Example--Percents--Equations with Percents: Example 21

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "48 is what percent of 55?" The solution involves setting up the equation 55 * (x / 100) = 48, then solving for x to get x = 48 * (100 / 55), which equals 87.27%. This example demonstrates how to calculate a percentage when the two numbers are relatively close in value, resulting in a percentage close to but less than 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22 Math Example--Percents--Equations with Percents: Example 22

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "52.2 is what percent of 98.5?" The solution involves setting up the equation 98.5 * (x / 100) = 52.2, then solving for x to get x = 52.2 * (100 / 98.5), which is approximately 52.99%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that is also close to the original numerator.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23 Math Example--Percents--Equations with Percents: Example 23

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "68 is what percent of 320?" The solution involves setting up the equation 320 * (x / 100) = 68, then solving for x to get x = 68 * (100 / 320), which equals 21.25%. This example demonstrates how to calculate a percentage when dealing with whole numbers, resulting in a percentage that's less than 25%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24 Math Example--Percents--Equations with Percents: Example 24

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "75.5 is what percent of 555.25?" The solution involves setting up the equation 555.25 * (x / 100) = 75.5, then solving for x to get x = 75.5 * (100 / 555.25), which is approximately 13.59%. This example introduces a scenario where both the numerator and denominator are decimal numbers, resulting in a percentage that's less than 15%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25 Math Example--Percents--Equations with Percents: Example 25

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "125 is what percent of 2?" The solution involves setting up the equation 2 * (x / 100) = 125, then solving for x to get x = 125 * (100 / 2), which equals 6250%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage well over 100%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26 Math Example--Percents--Equations with Percents: Example 26

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 3.5?" The solution involves setting up the equation 3.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 3.5), which equals 8571.43%. This example introduces a scenario where the resulting percentage is extremely large, over 8000%, due to the first number being significantly larger than the small decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27 Math Example--Percents--Equations with Percents: Example 27

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "278 is what percent of 99?" The solution involves setting up the equation 99 * (x / 100) = 278, then solving for x to get x = 278 * (100 / 99), which equals 280.80%. This example demonstrates how to calculate a percentage when the first number is significantly larger than the second, resulting in a percentage greater than 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 28 Math Example--Percents--Equations with Percents: Example 28 Math Example--Percents--Equations with Percents: Example 28

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "300 is what percent of 75.5?" The solution involves setting up the equation 75.5 * (x / 100) = 300, then solving for x to get x = 300 * (100 / 75.5), which equals 397.35%. This example introduces a scenario where the resulting percentage is close to 400%, with the first number being significantly larger than the decimal base number.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 29 Math Example--Percents--Equations with Percents: Example 29 Math Example--Percents--Equations with Percents: Example 29

Topic

Solving Equations

Description

This math example focuses on solving percent equations by asking "400 is what percent of 220?" The solution involves setting up the equation 220 * (x / 100) = 400, then solving for x to get x = 400 * (100 / 220), which equals 181.81%. This example demonstrates how to calculate a percentage when the first number is nearly double the second, resulting in a percentage between 150% and 200%.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 3 Math Example--Percents--Equations with Percents: Example 3 Math Example--Percents--Equations with Percents: Example 3

Topic

Solving Equations

Description

This math example focuses on solving percent equations, specifically asking "What is 8% of 58?" The solution involves converting 8% to its decimal form, 0.08, and then multiplying it by 58 to arrive at the answer of 4.64. This example introduces a larger whole number as the base value, demonstrating the scalability of the percent-to-decimal conversion method.

Solving Percent Equations
Math Example--Percents-- Equations with Percents: Example 30 Math Example--Percents--Equations with Percents: Example 30 Math Example--Percents--Equations with Percents: Example 30

Topic

Solving Equations

Description

This math example demonstrates solving percent equations by asking "333.5 is what percent of 500.25?" The solution involves setting up the equation 500.25 * (x / 100) = 333.5, then solving for x to get x = 333.5 * (100 / 500.25), which is approximately 66.67%. This example introduces a scenario where both numbers are decimals and the resulting percentage is less than 100%, showing how to handle more complex decimal calculations.

Solving Percent Equations