IXL Ad

Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 6 Unit 1

Expressions and Equations

Lesson 4: Practice Solving Equations and Representing Situations with Equations

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Nodes
SAT Math Prep—Quadratic Functions and Equations Description

Media4Math Classroom's SAT Math Prep series provide a thorough review of key math topics covered on the SAT. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a complete review of the topic of quadratic functions and equations. This module covers four key areas:

Definition of a quadratic function Definition of a quadratic equation Solving quadratic equations algebraically Solving quadratic functions graphically

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the SAT.

Applications of Quadratic Functions and Quadratic Equations and Functions
SAT Math Prep—Quadratic Functions and Equations Description

Media4Math Classroom's SAT Math Prep series provide a thorough review of key math topics covered on the SAT. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a complete review of the topic of quadratic functions and equations. This module covers four key areas:

Definition of a quadratic function Definition of a quadratic equation Solving quadratic equations algebraically Solving quadratic functions graphically

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the SAT.

Applications of Quadratic Functions and Quadratic Equations and Functions
What Is an Equation? Description

Your students may know how to solve equations (or not), but do they know the underlying mathematical processes and properties involved in solving them? Do they have sufficient vocabulary to explain their steps in solving an equation?

More than memorizing an algorithm, the ability to define and use the properties of equality, as well as other key parts of the equation-solving process are essential for mathematical competence. The ability to analyze and use logical reasoning are skills that go beyond the math classroom.

In this module, students learn the basics of the equation-solving process. These principles apply to any equation a student is solving and provide a needed foundational reinforcement for students.

Applications of Equations and Inequalities
What Is an Equation? Description

Your students may know how to solve equations (or not), but do they know the underlying mathematical processes and properties involved in solving them? Do they have sufficient vocabulary to explain their steps in solving an equation?

More than memorizing an algorithm, the ability to define and use the properties of equality, as well as other key parts of the equation-solving process are essential for mathematical competence. The ability to analyze and use logical reasoning are skills that go beyond the math classroom.

In this module, students learn the basics of the equation-solving process. These principles apply to any equation a student is solving and provide a needed foundational reinforcement for students.

Applications of Equations and Inequalities
SAT Math Prep—Quadratic Functions and Equations Description

Media4Math Classroom's SAT Math Prep series provide a thorough review of key math topics covered on the SAT. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a complete review of the topic of quadratic functions and equations. This module covers four key areas:

Definition of a quadratic function Definition of a quadratic equation Solving quadratic equations algebraically Solving quadratic functions graphically

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the SAT.

Applications of Quadratic Functions and Quadratic Equations and Functions
SAT Math Prep—Quadratic Functions and Equations Description

Media4Math Classroom's SAT Math Prep series provide a thorough review of key math topics covered on the SAT. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a complete review of the topic of quadratic functions and equations. This module covers four key areas:

Definition of a quadratic function Definition of a quadratic equation Solving quadratic equations algebraically Solving quadratic functions graphically

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the SAT.

Applications of Quadratic Functions and Quadratic Equations and Functions
SAT Math Prep--Systems of Equations Description

This module reviews systems of equations. In particular, these topics are covered.

Definition of a system of equations Substitution method Elimination method Non-linear systems

Plan on spending at least 30 minutes per topic. This entire module can be completed over a two-hour period, which can be broken up into several sessions.

For each topic students will review key concepts, look at numerous examples, and then look at sample SAT assessment items, with clear explanations to each assessment item.

Applications of Linear Systems
SAT Math Prep--Systems of Equations Description

This module reviews systems of equations. In particular, these topics are covered.

Definition of a system of equations Substitution method Elimination method Non-linear systems

Plan on spending at least 30 minutes per topic. This entire module can be completed over a two-hour period, which can be broken up into several sessions.

For each topic students will review key concepts, look at numerous examples, and then look at sample SAT assessment items, with clear explanations to each assessment item.

Applications of Linear Systems
SAT Math Prep--Linear Equations and Functions Description

Media4Math Classroom is developing a series of instructional modules for reviewing SAT math topics in detail. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a thorough review of the topic of linear equations. This module covers four key areas:

Slope-intercept form Point-slope form Equations for parallel and perpendicular lines Equations in standard form

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the test.

Applications of Linear Functions
SAT Math Prep--Linear Equations and Functions Description

Media4Math Classroom is developing a series of instructional modules for reviewing SAT math topics in detail. These modules review the key skills that are tested on the SAT with a two-pronged approach:

Review the basics of the math skills required. Develop an understanding of the types of questions that are likely to occur on the SAT around these skills.

In this module there is a thorough review of the topic of linear equations. This module covers four key areas:

Slope-intercept form Point-slope form Equations for parallel and perpendicular lines Equations in standard form

Students are given ample opportunities to review and test their understanding of the basics of these areas, before moving on to the more rigorous types of questions they can expect to see on the test.

Applications of Linear Functions
Solving Two-Step Equations Description

In this module students learn how to solve two-step equations. Students are shown how to solve these equations using the Properties of Equality (Addition, Subtraction, Multiplication, and Division).

Specifically, students work with the following equation types:

ax + b = c ax – b = c x/a + b = c x/a – b = c

Just as important as solving these equations, students are shown how to recognize such equations. It's in the recognition of the equation type that students can reason their way to the solution, by deciding which of the Properties of Equality to use.

Solving One-Step Equations
Solving Two-Step Equations Description

In this module students learn how to solve two-step equations. Students are shown how to solve these equations using the Properties of Equality (Addition, Subtraction, Multiplication, and Division).

Specifically, students work with the following equation types:

ax + b = c ax – b = c x/a + b = c x/a – b = c

Just as important as solving these equations, students are shown how to recognize such equations. It's in the recognition of the equation type that students can reason their way to the solution, by deciding which of the Properties of Equality to use.

Solving One-Step Equations
Solving Two-Step Equations Description

In this module students learn how to solve two-step equations. Students are shown how to solve these equations using the Properties of Equality (Addition, Subtraction, Multiplication, and Division).

Specifically, students work with the following equation types:

ax + b = c ax – b = c x/a + b = c x/a – b = c

Just as important as solving these equations, students are shown how to recognize such equations. It's in the recognition of the equation type that students can reason their way to the solution, by deciding which of the Properties of Equality to use.

Solving One-Step Equations
Closed Captioned Video: Algebra Tiles: Solving Multi-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving Multi-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving Multi-Step Equations Using Algebra Tiles

Video Tutorial: Algebra Tiles: Solving Multi-Step Equations Using Algebra Tiles. In this tutorial, students review how to model equations with algebra tiles. Then the video focuses on how to solve multi-step equations with algebra tiles.

Description

This is part of a collection of video tutorials the topic of Algebra Tiles.This series of videos describes what algebra tiles are and how they can be used to model numbers, operations, expressions, and equations. Use this series if you are incorporating the use of algebra tiles in your instruction.

Algebra Tiles--Expressions and Equations
Closed Captioned Video: Algebra Tiles: Solving One-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving One-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving One-Step Equations Using Algebra Tiles

Description

This is part of a collection of video tutorials the topic of Algebra Tiles.This series of videos describes what algebra tiles are and how they can be used to model numbers, operations, expressions, and equations. Use this series if you are incorporating the use of algebra tiles in your instruction.

—CLICK PREVIEW TO SEE THE VIDEO TUTORIAL— To see the complete collection of the video tutorials on this topic, click on this link.

The following section reviews the basics of algebra tiles. Use this material as background material, and also as a supplement to the video series.

Algebra Tiles--Expressions and Equations
Closed Captioned Video: Algebra Tiles: Solving Two-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving Two-Step Equations Using Algebra Tiles Closed Captioned Video: Algebra Tiles: Solving Two-Step Equations Using Algebra Tiles

Description

This is part of a collection of video tutorials the topic of Algebra Tiles.This series of videos describes what algebra tiles are and how they can be used to model numbers, operations, expressions, and equations. Use this series if you are incorporating the use of algebra tiles in your instruction.

—CLICK PREVIEW TO SEE THE VIDEO TUTORIAL— To see the complete collection of the video tutorials on this topic, click on this link.

The following section reviews the basics of algebra tiles. Use this material as background material, and also as a supplement to the video series.

Algebra Tiles--Expressions and Equations
Definition--Equation Concepts--"Not Equal To" Definition--Equation Concepts--"Not Equal To" Not Equal To

Topic

Equations

Definition

The "Not Equal To" symbol (≠) is used to indicate that two values are not equal.

Description

The "Not Equal To" symbol is crucial in mathematics as it denotes inequality between two expressions. This symbol is used in various mathematical contexts, such as solving inequalities, comparing numbers, and expressing conditions in algebraic equations. For example, in the inequality 𝑥 ≠ 5, it means that x can be any number except 5.

Numerical and Algebraic Expressions
Definition--Equation Concepts--Addition Property of Equality Definition--Equation Concepts--Addition Property of Equality Addition Property of Equality

Topic

Equations

Definition

The Addition Property of Equality states that if you add the same value to both sides of an equation, the equality remains true.

Description

The Addition Property of Equality is a fundamental principle in algebra. It asserts that for any real numbers a, b, and c, if a = b, then a + c = b + c. This property is used to solve equations and maintain balance. For example, to solve x − 3 = 7, you add 3 to both sides to get x = 10.

Applications of Equations and Inequalities
Definition--Equation Concepts--Algebraic Equation Definition--Equation Concepts--Algebraic Equation Algebraic Equation

Topic

Equations

Definition

An algebraic equation is a mathematical statement that shows the equality of two algebraic expressions. It's also another way of referring to a polynomial equation.

Description

Algebraic equations are central to algebra and involve variables, constants, and arithmetic operations. They are used to represent relationships and solve problems. For instance, the equation 2x + 3 = 7 can be solved to find x. Algebraic equations come in various forms, including linear, quadratic, and polynomial equations.

Applications of Equations and Inequalities
Definition--Equation Concepts--Algebraic Expression Definition--Equation Concepts--Algebraic Expression Algebraic Expression

Topic

Equations

Definition

An algebraic expression is a combination of variables, constants, and arithmetic operations, without an equality sign.

Description

Algebraic expressions are fundamental components of algebra. They represent quantities and relationships without asserting equality. Examples include 3x + 4 and 5y − 2. Unlike equations, expressions cannot be solved but can be simplified or evaluated for given variable values.

Numerical and Algebraic Expressions
Definition--Equation Concepts--Assigning Values to Variables Definition--Equation Concepts--Assigning Values to Variables Assigning Values to Variables

Topic

Equations

Definition

Assigning values to variables involves giving specific values to variables in an equation or expression.

Description

Assigning values to variables is a fundamental process in algebra. It involves substituting variables with specific numbers to evaluate expressions or solve equations. For example, in the equation 

y = 2x + 3

assigning x = 4 gives y = 11.

Variable Expressions
Definition--Equation Concepts--Conditional Equation Definition--Equation Concepts--Conditional Equation Conditional Equation

Topic

Equations

Definition

A conditional equation is true only for specific values of the variable(s).

Description

Conditional equations are equations that hold true only under certain conditions or for specific variable values. For example, the equation 

x2 = 4 

is true only when x = 2 or x = −2. These equations contrast with identities, which are true for all variable values.

Applications of Equations and Inequalities
Definition--Equation Concepts--Constant Term Definition--Equation Concepts--Constant Term Constant Term

Topic

Equations

Definition

A constant term is a term in an algebraic expression that does not contain any variables.

Description

Constant terms are fixed values in algebraic expressions and equations. They do not change because they lack variables. For example, in the expression 

3x + 4

the number 4 is a constant term. Constant terms are essential in forming and solving equations.

Variables and Unknowns
Definition--Equation Concepts--Division Property of Equality Definition--Equation Concepts--Division Property of Equality Division Property of Equality

Topic

Equations

Definition

The Division Property of Equality states that if you divide both sides of an equation by the same nonzero value, the equality remains true.

Description

The Division Property of Equality is a key principle in algebra. It states that for any real numbers a, b, and c (where 𝑐 ≠ 0), if 

a = b, then a ÷ c​ = b ÷ c 

This property is used to solve equations by isolating variables. For example, to solve 

3x = 12

divide both sides by 3 to get x = 4.

Applications of Equations and Inequalities
Definition--Equation Concepts--Equality Definition--Equation Concepts--Equality Equality

Topic

Equations

Definition

Equality is a mathematical statement that asserts that two expressions are equal.

Description

Equality is a foundational concept in mathematics. It indicates that two expressions have the same value, represented by the symbol "=". For example, in the equation 2 + 3 = 5, both sides are equal. Equality is used to form equations and solve problems.

In real-world applications, equality is used in accounting, engineering, and data analysis to ensure balance and accuracy. Understanding equality helps students develop logical reasoning and problem-solving skills.

Applications of Equations and Inequalities
Definition--Equation Concepts--Equation Definition--Equation Concepts--Equation Equation

Topic

Equations

Definition

An equation is a mathematical statement that asserts the equality of two expressions.

Description

Equations are central to mathematics, representing relationships between quantities. They consist of two expressions separated by an equals sign. For example, 

2x + 3 = 7

is an equation that can be solved to find x. Equations can be linear, quadratic, or polynomial, among others.

Applications of Equations and Inequalities
Definition--Equation Concepts--Equations in One Variable Definition--Equation Concepts--Equations in One Variable Equations in One Variable

Topic

Equations

Definition

Equations in one variable involve a single variable and can be solved to find its value.

Description

Equations in one variable are fundamental in algebra. They typically take the form of ax + b = 0, where x is the variable. Solving these equations involves isolating the variable to determine its value. For example, solving 

2x + 3 = 7 

yields 

x = 2

Applications of Equations and Inequalities
Definition--Equation Concepts--Equations in Two Variables Definition--Equation Concepts--Equations in Two Variables Equations in Two Variables

Topic

Equations

Definition

Equations in two variables involve two variables and describe a relationship between them.

Description

Equations in two variables are essential in algebra and coordinate geometry. They typically take the form of 

ax + by = c

and represent lines in a coordinate plane. For example, the equation 

2x + 3y = 6

can be graphed as a line.

Applications of Equations and Inequalities
Definition--Equation Concepts--Equivalent Equations Definition--Equation Concepts--Equivalent Equations Equivalent Equations

Topic

Equations

Definition

Equivalent equations are equations that have the same solutions.

Description

Equivalent equations are a key concept in algebra. They may look different but yield the same solutions. For instance, 

2x + 3 = 7

and 

4x + 6 = 14

are equivalent because both have the solution x = 2. Transformations such as addition, subtraction, multiplication, or division can produce equivalent equations.

Applications of Equations and Inequalities
Definition--Equation Concepts--False Equation Definition--Equation Concepts--False Equation False Equation

Topic

Equations

Definition

A false equation is an equation that is not true for any value of the variable(s).

Description

False equations are equations that do not hold true for any value of the variable(s). For example, the equation 

x + 2 = x + 3

is false because there is no value of x that makes both sides equal. Identifying false equations is important in verifying the validity of mathematical statements.

Applications of Equations and Inequalities
Definition--Equation Concepts--Identity Equation Definition--Equation Concepts--Identity Equation Identity Equation

Topic

Equations

Definition

An identity equation is true for all values of the variable(s).

Description

Identity equations are equations that hold true for all values of the variable(s). For example, the equation 

2(x + 1) = 2x + 2 

is an identity because it is true for any value of x. These equations are used to express mathematical identities and properties. In the equation above, the identity results from the use of the distributive property.

Applications of Equations and Inequalities
Definition--Equation Concepts--Inequation Definition--Equation Concepts--Inequation Inequation

Topic

Equations

Definition

An inequation is a mathematical statement that shows the inequality between two expressions.

Description

Inequations, or inequalities, are statements that compare two expressions using inequality symbols such as >, <, ≥, and ≤. For example, 

x + 3 > 5 

indicates that 𝑥 x must be greater than 2. Inequations are used to represent constraints and conditions in mathematical models. Inequations sometimes involve the inequality symbol: ≠.

Inequalities
Definition--Equation Concepts--Isolating the Variable Definition--Equation Concepts--Isolating the Variable Isolating the Variable

Topic

Equations

Definition

Isolating the variable involves manipulating an equation to get the variable alone on one side.

Description

Isolating the variable is a fundamental technique in algebra used to solve equations. It involves performing operations to both sides of an equation to get the variable by itself. For example, solving 

2x + 3 = 7

involves subtracting 3 and then dividing by 2 to isolate x, resulting in x = 2.

Variables and Unknowns
Definition--Equation Concepts--Left Side of the Equation Definition--Equation Concepts--Left Side of the Equation Left Side of the Equation

Topic

Equations

Definition

The left side of the equation refers to the expression on the left side of the equals sign.

Description

The left side of an equation is the part of the equation that appears before the equals sign. For example, in the equation 

2x + 3 = 7

the left side is 2x + 3. Understanding the left side of the equation is crucial for solving and balancing equations.

In real-world applications, recognizing the left side of an equation helps in setting up and solving problems accurately. It is essential for students to understand this concept to manipulate and solve equations effectively.

Applications of Equations and Inequalities
Definition--Equation Concepts--Linear Equation Definition--Equation Concepts--Linear Equation Linear Equation

Topic

Equations

Definition

A linear equation is an equation that does not have an variables raised to a power higher than one. A linear equation can have one or more variables.

Description

Linear equations are fundamental in algebra and describe relationships are summarized below. 

Applications of Linear Functions
Definition--Equation Concepts--Literal Equation Definition--Equation Concepts--Literal Equation Literal Equation

Topic

Equations

Definition

A literal equation is an equation that involves two or more variables.

Description

Literal equations involve multiple variables and are used to express relationships between them. For example, the formula for the area of a rectangle, 

A = l•w

is a literal equation involving the variables l and w. Solving literal equations often involves isolating one variable in terms of the others.

Applications of Equations and Inequalities
Definition--Equation Concepts--Multi-Step Equation Definition--Equation Concepts--Multi-Step Equation Multi-Step Equation

Topic

Equations

Definition

A multi-step equation requires more than one step to solve.

Description

Multi-step equations involve multiple operations to isolate the variable. For example, solving 

3x + 2 = 11

requires subtracting 2 and then dividing by 3 to find x=3. These equations are common in algebra and require a systematic approach to solve.

In real-world applications, multi-step equations are used in complex problem-solving scenarios such as engineering and finance. Understanding how to solve multi-step equations helps students develop critical thinking and problem-solving skills.

Solving Multistep Equations
Definition--Equation Concepts--Multiplication Property of Equality Definition--Equation Concepts--Multiplication Property of Equality Multiplication Property of Equality

Topic

Equations

Definition

The Multiplication Property of Equality states that if you multiply both sides of an equation by the same nonzero value, the equality remains true.

Description

The Multiplication Property of Equality is a fundamental principle in algebra. It states that for any real numbers a, b, and c (where 𝑐 ≠ 0), if 

a = b, then ac = bc

This property is used to solve equations by isolating variables. For example, to solve 

x/3 = 4

you multiply both sides by 3 to get x = 12.

Applications of Equations and Inequalities
Definition--Equation Concepts--Nonlinear Equation Definition--Equation Concepts--Nonlinear Equation Nonlinear Equation

Topic

Equations

Definition

A nonlinear equation is an equation that graphs as a curve and does not form a straight line.

Description

Nonlinear equations are equations that involve variables raised to powers other than one or involve products of variables. For example, the equation 

y = x2 

is nonlinear because it graphs as a parabola. These equations are used to model more complex relationships than linear equations.

Applications of Equations and Inequalities
Definition--Equation Concepts--Numerical Expression Definition--Equation Concepts--Numerical Expression Numerical Expression

Topic

Equations

Definition

A numerical expression is a mathematical phrase involving numbers and operation symbols, but no variables.

Description

Numerical expressions consist of numbers and operations such as addition, subtraction, multiplication, and division. For example, 

3 + 4 × 2

is a numerical expression. These expressions are evaluated to find their value.

In real-world applications, numerical expressions are used in everyday calculations such as budgeting, measuring, and data analysis. Understanding numerical expressions helps students perform arithmetic operations and develop computational skills.

Numerical Expressions
Definition--Equation Concepts--One-Step Equation Definition--Equation Concepts--One-Step Equation One-Step Equation

Topic

Equations

Definition

A one-step equation requires only one operation to solve.

Description

One-step equations are the simplest type of equations in algebra. They involve a single operation to isolate the variable. For example, solving 

x + 3 = 7

requires subtracting 3 from both sides to find x = 4.

These equations are used in basic problem-solving scenarios and form the foundation for understanding more complex equations. Understanding one-step equations helps students develop confidence in solving algebraic problems and prepares them for advanced algebraic concepts.

Solving One-Step Equations
Definition--Equation Concepts--Polynomial Equation Definition--Equation Concepts--Polynomial Equation Polynomial Equation

Topic

Equations

Definition

A polynomial equation is an equation that involves a polynomial expression.

Description

Polynomial equations involve expressions that include terms with variables raised to whole-number exponents. For example, the equation 

x2 − 4x + 4 = 0 

is a polynomial equation. These equations can be linear, quadratic, cubic, etc., depending on the highest power of the variable.

Polynomial Functions and Equations
Definition--Equation Concepts--Quadratic Equation Definition--Equation Concepts--Quadratic Equation Quadratic Equation

Topic

Equations

Definition

A quadratic equation is a polynomial equation of degree 2, typically in the form ax2 + bx + c = 0.

Description

Quadratic equations are fundamental in algebra and involve variables raised to the second power. For example, the equation 

x2 − 4x + 4 = 0 

is quadratic. These equations can be solved using methods such as factoring, completing the square, and the quadratic formula.

Quadratic Equations and Functions
Definition--Equation Concepts--Reflexive Property of Equality Definition--Equation Concepts--Reflexive Property of Equality Reflexive Property of Equality

Topic

Equations

Definition

The Reflexive Property of Equality states that any value is equal to itself.

Description

The Reflexive Property of Equality is a basic principle in mathematics. It states that for any value a, 

a = a

This property is used to justify steps in solving equations and proving mathematical statements.

In real-world applications, the reflexive property underlies the concept of identity and is fundamental in logical reasoning and proofs. Understanding this property helps students build a strong foundation in algebra and develop rigorous mathematical arguments.

Applications of Equations and Inequalities
Definition--Equation Concepts--Right Side of the Equation Definition--Equation Concepts--Right Side of the Equation Right Side of the Equation

Topic

Equations

Definition

The right side of the equation refers to the expression on the right side of the equals sign.

Description

The right side of an equation is the part of the equation that appears after the equals sign. For example, in the equation 

2x + 3 = 7

the right side is 7. Understanding the right side of the equation is crucial for solving and balancing equations.

Applications of Equations and Inequalities
Definition--Equation Concepts--Roots of an Equation Definition--Equation Concepts--Roots of an Equation Roots of an Equation

Topic

Equations

Definition

The roots of an equation are the values of the variable that satisfy the equation.

Description

The roots of an equation are the solutions that make the equation true. For example, the roots of the quadratic equation 

x2 − 4x + 4 = 0

are x = 2 because substituting 2 into the equation satisfies it. Finding roots is a fundamental task in algebra.

Applications of Equations and Inequalities
Definition--Equation Concepts--Solution Definition--Equation Concepts--Solution Solution

Topic

Equations

Definition

A solution is the value(s) of the variable(s) that satisfy an equation.

Description

The concept of solution is fundamental in equations, referring to the values that make the equation true. For example, in the equation 

x + 2 = 5

the solution is x = 3 because substituting 3 in place of x results in a true statement. Solutions can exist for various types of equations, whether single-variable, multi-variable, linear, or nonlinear.

Applications of Equations and Inequalities
Definition--Equation Concepts--Solving an Equation Definition--Equation Concepts--Solving an Equation Solving an Equation

Topic

Equations

Definition

Solving an equation involves finding the value(s) of the variable(s) that make the equation true.

Description

Solving an equation is a key skill in algebra, where one determines the values of variables that satisfy the equation. For example, in the equation 

2x + 3 = 7

one can find that x = 2 by isolating the variable through algebraic manipulations. Different techniques such as substitution, factoring, or using the quadratic formula may apply depending on the complexity of the equation.

Applications of Equations and Inequalities
Definition--Equation Concepts--Subtraction Property of Equality Definition--Equation Concepts--Subtraction Property of Equality Subtraction Property of Equality

Topic

Equations

Definition

The Subtraction Property of Equality states that if you subtract the same value from both sides of an equation, the equality remains true.

Description

The Subtraction Property of Equality is a fundamental principle in algebra. It states that for any real numbers a, b, and c, if 

a = b, then a − c = b − c

This property is used to solve equations by isolating variables. For example, to solve 

x + 3 = 7

you subtract 3 from both sides to get x = 4.

Applications of Equations and Inequalities
Definition--Equation Concepts--Symmetric Property of Equality Definition--Equation Concepts--Symmetric Property of Equality Symmetric Property of Equality

Topic

Equations

Definition

The Symmetric Property of Equality states that if a = b, then b = a.

Description

The Symmetric Property of Equality is a basic principle in mathematics. It asserts that the equality relation is symmetric, meaning that if one quantity equals another, then the second quantity equals the first. For example, if 

x = y

then

y = x

This property is used to justify steps in solving equations and proving mathematical statements.

Applications of Equations and Inequalities