edcom-728x90

IXL Ad

Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 6 Unit 1

Expressions and Equations

Lesson 6: Write Expressions Where Letters Stand for Numbers

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Nodes
Definition--Equation Concepts--Symmetric Property of Equality Definition--Equation Concepts--Symmetric Property of Equality Symmetric Property of Equality

Topic

Equations

Definition

The Symmetric Property of Equality states that if a = b, then b = a.

Description

The Symmetric Property of Equality is a basic principle in mathematics. It asserts that the equality relation is symmetric, meaning that if one quantity equals another, then the second quantity equals the first. For example, if 

x = y

then

y = x

This property is used to justify steps in solving equations and proving mathematical statements.

Applications of Equations and Inequalities
Definition--Equation Concepts--The Unknown Definition--Equation Concepts--The Unknown The Unknown

Topic

Equations

Definition

The unknown is the variable in an equation that needs to be solved for.

Description

The unknown in an equation represents the value that needs to be determined. For example, in the equation 

x + 3 = 7

x is the unknown. Identifying and solving for the unknown is a core aspect of algebra.

In real-world applications, finding the unknown is crucial for solving problems in various fields such as science, engineering, and finance. Understanding how to identify and solve for the unknown helps students develop problem-solving skills and apply mathematical concepts to real-life situations.

Variables and Unknowns
Definition--Equation Concepts--Transitive Property of Equality Definition--Equation Concepts--Transitive Property of Equality Transitive Property of Equality

Topic

Equations

Definition

The Transitive Property of Equality states that if a = b and b = c, then a = c.

Description

The Transitive Property of Equality is a fundamental principle in mathematics. It states that if one quantity equals a second quantity, and the second quantity equals a third, then the first and third quantities are equal. For example, if 

x = y

and

y = z

then 

x = z

This property is used to justify steps in solving equations and proving mathematical statements.

Applications of Equations and Inequalities
Definition--Equation Concepts--True Equation Definition--Equation Concepts--True Equation True Equation

Topic

Equations

Definition

A true equation is an equation that holds true for the given values of the variable(s).

Description

A true equation is an equation that is valid for specific values of the variable(s). For example, the equation 

2 + 3 = 5

is true because both sides are equal. Identifying true equations is important in verifying the correctness of mathematical statements.

In real-world applications, recognizing true equations helps in ensuring the accuracy of mathematical models and solutions. Understanding true equations helps students develop critical thinking and analytical skills.

Applications of Equations and Inequalities
Definition--Equation Concepts--Two-Step Equation Definition--Equation Concepts--Two-Step Equation Two-Step Equation

Topic

Equations

Definition

A two-step equation requires two operations to solve.

Description

Two-step equations involve performing two operations to isolate the variable. For example, solving 

2x + 3 = 7

requires subtracting 3 from both sides and then dividing by 2 to find x = 2. These equations are common in algebra and require a systematic approach to solve.

In real-world applications, two-step equations are used in problem-solving scenarios such as calculating costs or determining measurements. Understanding how to solve two-step equations helps students develop critical thinking and problem-solving skills.

Solving Two-Step Equations
Definition--Equation Concepts--Variable Expression Definition--Equation Concepts--Variable Expression Variable Expression

Topic

Equations

Definition

A variable expression is a mathematical phrase involving variables, numbers, and operation symbols.

Description

Variable expressions consist of variables, numbers, and operations such as addition, subtraction, multiplication, and division. For example, 

3x + 4

is a variable expression. These expressions are used to represent quantities and relationships in algebra.

Variable Expressions
Definition--Equation Concepts--Visual Models for Equations Definition--Equation Concepts--Visual Models for Equations Visual Models for Equations

Topic

Equations

Definition

Visual models for equations use graphical representations to illustrate the relationships between variables.

Description

Visual models for equations include graphs, charts, and diagrams that represent the relationships between variables. For example, a graph of the equation 

y = 2x + 3

shows a straight line with a slope of 2 and a y-intercept of 3. These models help in understanding and interpreting equations.

Applications of Equations and Inequalities
Definition--Variables, Unknowns, and Constants--Algebraic Expression Definition--Variables, Unknowns, and Constants--Algebraic Expression Definition--Variables, Unknowns, and Constants--Algebraic Expression

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Assigning Values to Variables Definition--Variables, Unknowns, and Constants--Assigning Values to Variables Definition--Variables, Unknowns, and Constants--Assigning Values to Variables

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Coefficient Definition--Variables, Unknowns, and Constants--Coefficient What Is a Coefficient?

This is part of a series of definitions that focus on constants, variables, and coefficients. These definition cards can easily be incorporated into a lesson plan.

—PRESS PREVIEW TO SEE THE DEFINITION— To see the complete collection of definitions on this topic, click on this link.

The following section provides a brief review of number properties that are helpful in working with numerical and variable expressions.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Constant Definition--Variables, Unknowns, and Constants--Constant Definition--Variables, Unknowns, and Constants--Constant

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Constant of Proportionality Definition--Variables, Unknowns, and Constants--Constant of Proportionality Definition--Variables, Unknowns, and Constants--Constant of Proportionality

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Constant of Variation Definition--Variables, Unknowns, and Constants--Constant of Variation Definition--Variables, Unknowns, and Constants--Constant of Variation

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Constant Term Definition--Variables, Unknowns, and Constants--Constant Term Definition--Variables, Unknowns, and Constants--Constant Term

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Evaluating an Algebraic Expression Definition--Variables, Unknowns, and Constants--Evaluating an Algebraic Expression Definition--Variables, Unknowns, and Constants--Evaluating an Algebraic Expression

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Models for  Numbers Definition--Variables, Unknowns, and Constants--Models for Numbers Definition--Variables, Unknowns, and Constants--Models for Numbers

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Models for Variables Definition--Variables, Unknowns, and Constants--Models for Variables Definition--Variables, Unknowns, and Constants--Models for Variables

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Numerical Expression Definition--Variables, Unknowns, and Constants--Numerical Expression Definition--Variables, Unknowns, and Constants--Numerical Expression

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Parameter Definition--Variables, Unknowns, and Constants--Parameter Definition--Variables, Unknowns, and Constants--Parameter

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Random Variable Definition--Variables, Unknowns, and Constants--Random Variable Definition--Variables, Unknowns, and Constants--Random Variable

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Range of a Variable Definition--Variables, Unknowns, and Constants--Range of a Variable Definition--Variables, Unknowns, and Constants--Range of a Variable

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Solving for the Unknown Definition--Variables, Unknowns, and Constants--Solving for the Unknown Definition--Variables, Unknowns, and Constants--Solving for the Unknown

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Special Constants Definition--Variables, Unknowns, and Constants--Special Constants Definition--Variables, Unknowns, and Constants--Special Constants

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Unknown Definition--Variables, Unknowns, and Constants--Unknown Definition--Variables, Unknowns, and Constants--Unknown

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Variable Definition--Variables, Unknowns, and Constants--Variable Definition | Variables, Unknowns, and Constants | Variable

This is part of a collection of definitions on the topic of variables and constants. These definitions can easily be incorporated into your lesson plans. 

—PRESS PREVIEW TO SEE THE DEFINITION— To see the complete collection of definitions on this topic, click on this link.

The following section provides additional information on the topic.

Watch this video about variables and equations. (The transcript is included.)

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Variable Expression Definition--Variables, Unknowns, and Constants--Variable Expression Definition--Variables, Unknowns, and Constants--Variable Expression

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
Definition--Variables, Unknowns, and Constants--Verbal Representations for Unknowns Definition--Variables, Unknowns, and Constants--Verbal Representations for Unknowns Definition--Variables, Unknowns, and Constants--Verbal Representations for Unknowns

This is part of a collection of definitions related to variables, unknowns, and constants. This includes general definitions for variables, unknowns, and constants, as well as related terms that describe their properties.

Variables and Unknowns
INSTRUCTIONAL RESOURCE: Math Examples--Equations with Fractions INSTRUCTIONAL RESOURCE: Math Examples 13 INSTRUCTIONAL RESOURCE: Math Examples--Equations with Fractions

The complete set of 13 examples that make up this set of tutorials.

This is part of a collection of math examples for a variety of math topics. To see the complete collection of these resources, click on this link. Note: The download is a PPT file.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Solving Fraction Equations
INSTRUCTIONAL RESOURCE: Math Examples--Equations with Percents INSTRUCTIONAL RESOURCE: Math Examples 14 INSTRUCTIONAL RESOURCE: Math Examples--Equations with Percents

The complete set of 42 examples that make up this set of tutorials.

This is part of a collection of math examples for a variety of math topics. To see the complete collection of these resources, click on this link. Note: The download is a PPT file.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Solving Percent Equations
INSTRUCTIONAL RESOURCE: Math Examples--One-Variable Equations INSTRUCTIONAL RESOURCE: Math Examples 34 INSTRUCTIONAL RESOURCE: Math Examples--One-Variable Equations

The complete set of 21 examples that make up this set of tutorials.

This is part of a collection of math examples for a variety of math topics. To see the complete collection of these resources, click on this link. Note: The download is a PPT file.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Applications of Equations and Inequalities
INSTRUCTIONAL RESOURCE: Tutorial: Solving Addition and Subtraction Equations INSTRUCTIONAL RESOURCE: Tutorial: Solving Addition and Subtraction Equations INSTRUCTIONAL RESOURCE: Tutorial: Solving Addition and Subtraction Equations

Learn how to solve addition and subtraction equations using column addition and subtraction techniques.

This is part of a collection of math tutorials on a variety of math topics. To see the complete collection of these resources, click on this link.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Addition Expressions and Equations and Subtraction Expressions and Equations
What Is an Equation? INSTRUCTIONAL RESOURCE: Tutorial: What Is an Equation? INSTRUCTIONAL RESOURCE: Tutorial: What Is an Equation?

An equation shows a relationship between two quantities. Note: The download is a PDF.

This is part of a collection of math tutorials on a variety of math topics. To see the complete collection of these resources, click on this link.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Applications of Equations and Inequalities and Variables and Unknowns
INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Division Equations INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Division Equations INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Division Equations

This tutorial provides an overview of solving division equations, with the focus on one- and two-step equations.

This is part of a collection of math tutorials on a variety of math topics. To see the complete collection of these resources, click on this link.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Division Expressions and Equations
INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Multiplication Equations INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Multiplication Equations INSTRUCTIONAL RESOURCE: Tutorial: Writing and Solving Multiplication Equations

This tutorial provides an overview of writing and solving multiplication equations. The focus is on one- and two-step equations.

This is part of a collection of math tutorials on a variety of math topics. To see the complete collection of these resources, click on this link.

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Multiplication Expressions and Equations
INSTRUCTIONAL RESOURCE: Tutorial: Variables and Variable Expressions INSTRUCTIONAL RESOURCE: Tutorial: Variables and Variable Expressions INSTRUCTIONAL RESOURCE: Tutorial: Variables and Variable Expressions

In this Slide Show, learn about variables and variable expressions.

This is part of a collection of tutorials on a variety of math topics. To see the complete collection of these resources, click on this link. Note: The download is a PPT file.

<

Library of Instructional Resources

To see the complete library of Instructional Resources , click on this link.

Variable Expressions, Applications of Equations and Inequalities and Variables and Unknowns
Math Example--Quadratics--Calculating the Discriminant: Example 1 Math Example--Quadratics--Calculating the Discriminant: Example 1 Calculating the Discriminant: Example 1

Topic

Quadratics

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 10 Math Example--Quadratics--Calculating the Discriminant: Example 10 Calculating the Discriminant: Example 10

Topic

Quadratics

Description

This example illustrates a quadratic with two real roots. The discriminant being positive indicates that there are two real solutions to the equation. This scenario helps students recognize the significance of repeated roots and their graphical representation.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 2 Math Example--Quadratics--Calculating the Discriminant: Example 2 Calculating the Discriminant: Example 2

Topic

Quadratics

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 3 Math Example--Quadratics--Calculating the Discriminant: Example 3 Calculating the Discriminant: Example 3

Topic

Quadratics

Description

This example demonstrates a quadratic equation with one distinct real root, highlighting the relationship between the coefficients and the resulting discriminant. By calculating the discriminant, students can identify the nature of the roots, which is crucial for solving quadratics effectively. Skills involved include algebraic manipulation and understanding the graphical implications of roots.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 4 Math Example--Quadratics--Calculating the Discriminant: Example 4 Calculating the Discriminant: Example 4

Topic

Quadratics

Description

This example illustrates a quadratic with two real roots. The discriminant being positive indicates that there are two real roots. This scenario helps students recognize the significance of repeated roots and their graphical representation.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 5 Math Example--Quadratics--Calculating the Discriminant: Example 5 Calculating the Discriminant: Example 5

Topic

Quadratics

Description

This example demonstrates a quadratic equation with no distinct real roots, highlighting the relationship between the coefficients and the resulting discriminant. By calculating the discriminant, students can identify the nature of the roots, which is crucial for solving quadratics effectively. Skills involved include algebraic manipulation and understanding the graphical implications of roots.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 6 Math Example--Quadratics--Calculating the Discriminant: Example 6 Calculating the Discriminant: Example 6

Topic

Quadratics

Description

This example illustrates a quadratic with a double real root. The discriminant being zero indicates that there is exactly one real solution to the equation. This scenario helps students recognize the significance of repeated roots and their graphical representation.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 7 Math Example--Quadratics--Calculating the Discriminant: Example 7 Calculating the Discriminant: Example 7

Topic

Quadratics

Description

In this example, the quadratic equation results in two roots, demonstrating the cases where the discriminant is positive. This provides insights into scenarios where quadratic equations intersect the x-axis twice. Skills in algebra are focused on interpreting complex solutions and their geometric implications.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 8 Math Example--Quadratics--Calculating the Discriminant: Example 8 Calculating the Discriminant: Example 8

Topic

Quadratics

Description

This example illustrates a quadratic with two real roots. The discriminant being positive indicates that there are two real solutions to the equation. This scenario helps students recognize the significance of two roots and their graphical representation.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Quadratics--Calculating the Discriminant: Example 9 Math Example--Quadratics--Calculating the Discriminant: Example 9 Calculating the Discriminant: Example 9

Topic

Quadratics

Description

This example demonstrates a quadratic equation with two distinct real roots, highlighting the relationship between the coefficients and the resulting discriminant. By calculating the discriminant, students can identify the nature of the roots, which is crucial for solving quadratics effectively. Skills involved include algebraic manipulation and understanding the graphical implications of roots.

For a complete collection of math examples related to Quadratics click on this link: Math Examples: Quadratics Collection.

Quadratic Formula
Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 1 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 1 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 1

Topic

Ratios, Proportions, and Percents

Description

This example demonstrates how to solve a proportion problem where two ratios a:b and c:d are proportional. Given the values b = 3, c = 4, and d = 6, we need to find the value of a. The proportion is set up as a / 3 = 4 / 6, which is then solved to find that a = 2.

Proportions
Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 10 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 10 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 10

Topic

Ratios, Proportions, and Percents

Description

This example illustrates solving a proportion problem using similar triangles with algebraic expressions. Two triangles are shown, one with sides of 6 and 9, and the other with sides of 2x and 2x + 9. The problem requires setting up a proportion: 6 / 9 = 2x / (2x + 9). Solving this equation leads to x = 9, which then allows us to find the side lengths of 18 and 27.

Proportions
Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 11 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 11 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 11

Topic

Ratios, Proportions, and Percents

Description

This example demonstrates solving a proportion problem using similar right triangles. Two right triangles are shown, one with legs of 7 and 9, and the other with legs of 14 and x. The problem requires finding the length of side x by setting up a proportion based on the similar triangles: 7 / 9 = 14 / x. Solving this equation leads to x = 18.

Proportions
Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 12 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 12 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 12

Topic

Ratios, Proportions, and Percents

Description

This example illustrates solving a proportion problem using similar right triangles with algebraic expressions. Two right triangles are shown, one with legs of 5 and 8, and the other with legs of 2x and (2x + 6). The problem requires setting up a proportion: 5 / 8 = 2x / (2x + 6). Solving this equation leads to x = 5, which then allows us to find the side lengths of 10 and 16.

Proportions
Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 13 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 13 Math Example--Ratios, Proportions, and Percents--Solving Proportions: Example 13

Topic

Ratios, Proportions, and Percents

Description

This example demonstrates solving a proportion problem using similar right triangles with special angles (30°-60°-90°). Two triangles are shown, with the smaller one having sides of 6√3 and 6, and the larger one having sides of x and 12. The problem requires finding the length of side x by setting up a proportion: (6√3) / 6 = x / 12. Solving this equation leads to x = 12√3.

Proportions