IXL Ad

Illustrative Math-Media4Math Alignment

 

 

Illustrative Math Alignment: Grade 6 Unit 8

Data Sets and Distributions

Lesson 18: Using Data to Solve Problems

Use the following Media4Math resources with this Illustrative Math lesson.

Thumbnail Image Title Body Curriculum Nodes
Definition--Measures of Central Tendency--Mode of Categorical Data Definition--Measures of Central Tendency--Mode of Categorical Data Mode of Categorical Data

Topic

Statistics

Definition

The mode of categorical data is the most frequent item in a categorical data set.

Description

The Mode of Categorical Data is useful for finding the most frequent data item used with non-numerical data. For example, preferences for discrete characteristics can result in a mode.

Data Analysis
Definition--Measures of Central Tendency--Variance Definition--Measures of Central Tendency--Variance Variance

Topic

Statistics

Definition

Variance is a measure of the dispersion of a set of values, calculated as the average of the squared deviations from the mean.

Description

Variance quantifies the degree of spread in a data set, providing insight into the variability of data points around the mean. It is a fundamental concept in statistics, used in fields such as finance, research, and engineering to assess risk and variability. A high variance indicates greater dispersion, while a low variance suggests that data points are closer to the mean.

Data Analysis
Definition--Measures of Central Tendency--Standard Deviation Definition--Measures of Central Tendency--Standard Deviation Standard Deviation

Topic

Statistics

Definition

Standard deviation is a measure of the amount of variation or dispersion in a set of values.

Description

Standard deviation quantifies the degree of variation in a data set, indicating how much individual data points deviate from the mean. It is a crucial statistic for understanding the spread of data and is widely used in fields such as finance, research, and quality control to assess variability and risk. A low standard deviation indicates that data points are close to the mean, while a high standard deviation suggests greater variability.

Data Analysis
Definition--Measures of Central Tendency--Histogram Definition--Measures of Central Tendency--Histogram Histogram

Topic

Statistics

Definition

A histogram is a graphical representation of data distribution using bars of different heights.

Description

Histograms are used to visualize the frequency distribution of continuous data, making it easier to identify patterns and trends. They are widely used in fields such as economics, biology, and engineering to analyze data distributions and detect anomalies. In mathematics, histograms are essential for understanding probability distributions and statistical inference.

Data Analysis
Definition--Measures of Central Tendency--Skewed Distribution Definition--Measures of Central Tendency--Skewed Distribution Skewed Distribution

Topic

Statistics

Definition

A skewed distribution is a probability distribution that is not symmetric, with data tending to cluster more on one side.

Description

Skewed distributions occur when data is not evenly distributed around the mean, resulting in a longer tail on one side. Skewness can be positive (right-skewed) or negative (left-skewed), affecting the interpretation of data and statistical measures such as the mean and median. Skewed distributions are common in real-world data, such as income levels and test scores, where extreme values can influence the overall distribution.

Data Analysis
Definition--Measures of Central Tendency--Symmetric Distribution Definition--Measures of Central Tendency--Symmetric Distribution Symmetric Distribution

Topic

Statistics

Definition

A symmetric distribution is a probability distribution where the left and right sides are mirror images of each other.

Description

Symmetric distributions are characterized by data that is evenly distributed around the mean, resulting in a balanced, mirror-image shape. The most common symmetric distribution is the normal distribution, which is widely used in statistics for modeling natural phenomena. Symmetric distributions are important for statistical inference, as many statistical tests assume data is symmetrically distributed.

Data Analysis
Definition--Measures of Central Tendency--Continuous Data Definition--Measures of Central Tendency--Continuous Data Continuous Data

Topic

Statistics

Definition

Continuous data is numerical data that can take any value within a range.

Description

Continuous data is vital for representing measurements such as height, weight, and temperature, which can assume an infinite number of values within a given range. In real-world applications, continuous data is used in fields like engineering, physics, and economics to model and predict outcomes. Understanding continuous data is essential for performing calculations involving integrals and derivatives in calculus.

Data Analysis
Definition--Measures of Central Tendency--Discrete Data Definition--Measures of Central Tendency--Discrete Data Discrete Data

Topic

Statistics

Definition

Discrete data consists of countable values, often represented by whole numbers.

Description

Discrete data is commonly used in situations where data points are distinct and separate, such as the number of students in a class or the number of cars in a parking lot. It is crucial for fields like computer science, where discrete structures and algorithms are fundamental. In mathematics, discrete data is used in probability theory and combinatorics, helping to solve problems involving permutations and combinations.

Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 1 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 1 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 1

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 2 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 2 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 2

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 3 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 3 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 3

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 4 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 4 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 4

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 5 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 5 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 5

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 6 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 6 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 6

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 7 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 7 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 7

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 8 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 8 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 8

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 9 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 9 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 9

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 10 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 10 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 10

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 11 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 11 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 11

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 12 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 12 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 12

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 13 Math Example--Charts, Graphs, and Plots--Reading and Interpreting Scaled Graphs--Example 13 Math Example--Charts, Graphs, and Plots-- Reading and Interpreting Scaled Graphs--Example 13

In this set of math examples, analyze the behavior of different scatterplots. This includes linear and quadratic models.

Subtraction Facts to 100 and Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 1 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 1 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 1

Topic

Measures of Central Tendency

Description

This math example demonstrates the calculation of the mean for a data set that includes negative numbers: 0, 8, 5, -5, 3, -8, 8, 4, 9, -4. The example emphasizes the step-by-step process of finding the mean, showing how to handle both positive and negative values in the calculation.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 2 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 2 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 2

Topic

Measures of Central Tendency

Description

This example illustrates the calculation of the mean for a dataset containing both positive and negative numbers: 7, 4, 1, 1, -1, -2, 9, 4, -9, -4. The step-by-step process shows how to sum all values, including negative ones, and divide by the total number of data points to find the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 3 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 3 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 3

Topic

Measures of Central Tendency

Description

This example demonstrates the calculation of the mean for a dataset that includes negative numbers and zeros: 4, -1, 0, -2, -9, 0, -6, 5, 0, -1. The step-by-step process illustrates how to sum all values, including negatives and zeros, and divide by the total number of data points to determine the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 4 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 4 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 4

Topic

Measures of Central Tendency

Description

This example illustrates the calculation of the mean for a dataset containing both positive and negative numbers: -3, 8, 2, 1, 3, -6, -9, 3, -4. The step-by-step process demonstrates how to sum all values, including negative ones, and divide by the total number of data points to find the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 5 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 5 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 5

Topic

Measures of Central Tendency

Description

This example demonstrates the calculation of the mean for a dataset that includes both positive and negative numbers: -1, 9, 3, 3, 6, -8, 8, 1, 4, 5. The step-by-step process shows how to sum all values, including negative ones, and divide by the total number of data points to determine the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 6 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 6 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 6

Topic

Measures of Central Tendency

Description

This example illustrates the calculation of the mean for a dataset containing both positive and negative numbers: -4, -5, 6, 2, 5, 7, 9, 9, -9, 5. The step-by-step process demonstrates how to sum all values, including negative ones, and divide by the total number of data points to find the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 7 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 7 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 7

Topic

Measures of Central Tendency

Description

This example demonstrates the calculation of the mean for a dataset that includes negative numbers and zero: -4, 0, 2, 9, -2, -3, -5, 10, -7, 5. The step-by-step process illustrates how to sum all values, including negatives and zero, and divide by the total number of data points to determine the mean.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 8 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 8 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 8

Topic

Measures of Central Tendency

Description

This image shows a math example calculating the mean of a data set. The numbers are: 4, 8, -6, -6, 6, -3, 4, -8, -6, -8. The solution uses the mean formula. Example 8 demonstrates finding the mean of the data set. The mean is calculated by summing all numbers and dividing by the count of numbers, resulting in (-15) / (10) = -1.5.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 9 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 9 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 9

Topic

Measures of Central Tendency

Description

The image shows Example 9, illustrating how to find the mean of a data set using the mean formula. This example demonstrates finding the mean of the data set: -8, -9, 10, -2, 3, -2, -8, -3, 2, 5. The calculation is shown step-by-step: Mean = Sum / Count. The sum of all numbers (-8 + (-9) + 10 + (-2) + 3 + (-2) + (-8) + (-3) + 2 + 5) is divided by the count of numbers (10), resulting in -12 / 10 = -1.2.

Data Analysis
Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 10 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 10 Math Example--Measures of Central Tendency--Mean of Data That Includes Negative Numbers--Example 10

Topic

Measures of Central Tendency

Description

The image shows Example 10, demonstrating how to calculate the mean for a different set of numbers. This example illustrates finding the mean of the data set: -6, 5, -5, -5, -7, -7, -4, -1, 3. The calculation is presented step-by-step: Mean = Sum / Count. The sum of all numbers (-6 + 5 + (-5) + (-5) + (-7) + (-7) + (-4) + (-1) + 3) is divided by the count of numbers (10), resulting in -34 / 10 = -3.4.

Data Analysis
Closed Captioned Video: TI-Nspire Mini-Tutorial: Finding the Mean of a Data List Closed Captioned Video: Mean of a Data List Closed Captioned Video: Mean of a Data List

In this TI Nspire tutorial, the Spreadsheet and Calculator windows are used to find the mean of a data list. This video supports the TI-Nspire Clickpad and Touchpad. This Mini-Tutorial Video includes a worksheet. .

Data Analysis
Closed Captioned Video: TI-Nspire Mini-Tutorial: Finding the Median of a Data List Closed Captioned Video: Median of a Data List Closed Captioned Video: Median of a Data List

In this TI Nspire tutorial, the Spreadsheet and Calculator windows are used to find the median of a data list. This video supports the TI-Nspire Clickpad and Touchpad. This Mini-Tutorial Video includes a worksheet. .

Data Analysis
Video Transcript: TI-Nspire Mini-Tutorial: Finding the Mean of a Data List Video Transcript: TI-Nspire Mini-Tutorial: Finding the Mean of a Data List Video Transcript: TI-Nspire Mini-Tutorial: Finding the Mean of a Data List

This is the transcript for the TI-Nspire Mini-Tutorial entitled, Finding the Mean of a Data List.

This is part of a collection of video transcripts for the video tutorial series on using the TI-Nspire Graphing Calculator. To see the complete collection of transcripts, click on this link. Note: The download is a PDF file. Video Transcript Library

To see the complete collection of video transcriptsy, click on this link.

Data Analysis
Video Transcript: TI-Nspire Mini-Tutorial: Finding the Median of a Data List Video Transcript: TI-Nspire Mini-Tutorial: Finding the Median of a Data List Video Transcript: TI-Nspire Mini-Tutorial: Finding the Median of a Data List

This is the transcript for the TI-Nspire Mini-Tutorial entitled, Finding the Median of a Data List.

This is part of a collection of video transcripts for the video tutorial series on using the TI-Nspire Graphing Calculator. To see the complete collection of transcripts, click on this link. Note: The download is a PDF file. Video Transcript Library

To see the complete collection of video transcriptsy, click on this link.

Data Analysis
Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, Segment 3 Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, 3 Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, Segment 3

In this Investigation we look at real-world data involving endangered wolf populations. This video is Segment 3 of a 4 segment series related to Data Analysis and Probability. Segments 3 and 4 are grouped together.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, Segment 1 Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, 1 Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability, Segment 1

In this Investigation we explore uncertainty and randomness. This video is Segment 1 of a 4 segment series related to Data Analysis and Probability. Segments 1 and 2 are grouped together.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability Closed Captioned Video: Algebra Nspirations: Data Analysis and Probability

What are the two meanings of statistics? What does it really mean that an event has a 50% probability of occurring? Why are data analysis and probability always taught together? Written and hosted by internationally acclaimed math educator Dr. Monica Neagoy, this video answers these questions and addresses fundamental concepts such as the law of large numbers and the notion of regression analysis. Both engaging investigations are based on true stories and real data, utilize different Nspire applications, and model the seamless connection among various problem representations. Concepts explored: statistics, data analysis, regression analysis.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Applications: Linear Functions, Segment 3: Oil Exploration Closed Captioned Video: Algebra Applications: Linear Functions, 3 Closed Captioned Video: Algebra Applications: Linear Functions, Segment 3: Oil Exploration

Linear Expressions, Equations, and Functions

Linear Exp
Special Functions and Applications of Linear Functions
Closed Captioned Video: Algebra Applications: Data Analysis, Segment 4: What is an Adjustable Rate Mortgage? Closed Captioned Video: Algebra Applications: Data Analysis, 4 Closed Captioned Video: Algebra Applications: Data Analysis, Segment 4: What is an Adjustable Rate Mortgage?

Another factor in the mortgage crisis was the use of adjustable rate mortgages. Students run a number of scenarios to test adjustable rate mortgages, while also taking into account the state of the housing market during the time of the mortgage crisis.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Applications: Data Analysis, Segment 3: What Is a What is a Subprime Mortgage? Closed Captioned Video: Algebra Applications: Data Analysis, 3 Closed Captioned Video: Algebra Applications: Data Analysis, Segment 3: What Is a What is a Subprime Mortgage?

Having learned the general features of a mortgage, students learn the specifics of a subprime mortgage. With this comes the notion of a credit score, and with credit scores come the probabilities for a loan default. Students use the amortization table to run probability simulations to determine possible loan defaults on subprime mortgages.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Applications: Data Analysis, Segment 2: What Is a Mortgage? Closed Captioned Video: Algebra Applications: Data Analysis, 2 Closed Captioned Video: Algebra Applications: Data Analysis, Segment 2: What Is a Mortgage?

The time value of money is at the basis of all loans. Students learn about the key factors that determine monthly mortgage payments and use the TI-Nspire to create an amortization table. This table is used throughout the rest of the program to explore different scenarios.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Applications: Data Analysis, Segment 1: Introduction Closed Captioned Video: Algebra Applications: Data Analysis, 1 Closed Captioned Video: Algebra Applications: Data Analysis, Segment 1: Introduction

In this introductory segment students learn about the mortage crisis of 2008. In the process they get a brief introduction to what a mortgage is.

Data Analysis and Data Gathering
Closed Captioned Video: Algebra Applications: Data Analysis Closed Captioned Video: Algebra Applications: Data Analysis Closed Captioned Video: Algebra Applications: Data Analysis

In this episode of Algebra Applications, students explore the dramatic events of 2008 related to the mortgage crisis. Brought about principally through mortgage defaults, the effect on the overall economy was severe. Yet, this situation offers an ideal case study for the exploration of key concepts in data analysis and probability. By exploring these questions students get a front row seat to the historical events of the world's largest economy.

Data Analysis and Data Gathering
Closed Captioned Video: Ratios and Rates: Rates from Data Closed Captioned Video: Ratios and Rates: Rates from Data Closed Captioned Video: Ratios and Rates: Rates from Data

Video Tutorial: Ratios and Rates: Rates from Data. In this video, we look at linear data sets that can be used to find the rate of change.

Ratios and Rates
Closed Captioned Video: Measures of Central Tendency: The Mean and Normally Distributed Data Closed Captioned Video: Measures of Central Tendency: The Mean and Normally Distributed Data Closed Captioned Video: Measures of Central Tendency: The Mean and Normally Distributed Data

In this video tutorial students learn about normally distributed data and how to identify the population mean from the normal distribution. Standard deviation is briefly introduced. Includes three real-world examples.

Data Analysis and Data Gathering
Closed Captioned Video: Measures of Central Tendency: Finding the Mode of a Data Set Closed Captioned Video: Measures of Central Tendency: Finding the Mode of a Data Set Closed Captioned Video: Measures of Central Tendency: Finding the Mode of a Data Set

In this video tutorial students learn how to calculate the mode of a data set, as well as how the mode differs from the mean and median.Includes three real-world examples.

Data Analysis and Data Gathering
Closed Captioned Video: Measures of Central Tendency: Finding the Median of a Data Set Closed Captioned Video: Measures of Central Tendency: Finding the Median of a Data Set Closed Captioned Video: Measures of Central Tendency: Finding the Median of a Data Set

In this video tutorial students learn how to find the median of a data set. The mean is also calculated so that students can learn similarities and differences between these two measures of central tendency. Includes three real-world examples.

Data Analysis and Data Gathering
Closed Captioned Video: Place Value: Organizing Data Using Place Value Closed Captioned Video: Place Value: Organizing Data Using Place Value Closed Captioned Video: Place Value: Organizing Data Using Place Value

In this tutorial, students arrange decimal data using place value techniques.

Place Value
Closed Captioned Video: Measures of Central Tendency: Finding the Mean of a Data Set II Closed Captioned Video: Measures of Central Tendency: Finding the Mean of a Data Set II Closed Captioned Video: Measures of Central Tendency: Finding the Mean of a Data Set II

In this video tutorial students learn how to calculate the mean when some of the data items are negative numbers. Includes three real-world examples.

Data Analysis and Data Gathering